如圖①,在矩形紙片ABCD中,AB=+1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為    

(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為    ;

(3)如圖④,將圖②中的△AED′繞點E順時針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點B,求弧D′D″的長.(結(jié)果保留π)


(1)

(2)。

(3)∵∠C=90°,BC=,EC=1,∴!唷螧EC=60°。

由翻折可知:∠DEA=45°,∴∠AEA′=75°=∠D′ED″。

【解析】

          ∵由(1)知AD′=,∴BD′=1。

∵將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,∴B′D′=BD′=1。

∵由(1)知AD′=AD=D′E=DE=,∴四邊形ADED′是正方形。

∴B′F=AB′=﹣1。

∴S梯形B′FED′=(B′F+D′E)•B′D′=﹣1+)×1=。

(3)根據(jù)直角三角形的性質(zhì)求出∠BEC的度數(shù),由翻折變換的性質(zhì)可得出∠DEA的度數(shù),故可得出∠AEA′=75°=∠D′ED″,由弧長公式即可得出結(jié)論!


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


 如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別是點E,F(xiàn),連接EF,交AD于點G,求證:AD⊥EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,拋物線與y軸相交于點A,與過點A平行于x軸的直線相交于點B(點B在第一象限).拋物線的頂點C在直線OB上,對稱軸與x軸相交于點D。平移拋物線,使其經(jīng)過點B、D,則平移后的拋物線的解析式為      。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,在邊長為4的正方形ABCD中,動點P,Q同時從A點出發(fā),沿AB→BC→CD向D點運動,點P的速度是每秒2個單位長度,點Q的速度是每秒1個單位長度,當P運動到D點時,P、Q兩點同時停止運動。設P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系式是         。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在△ABC中,P是AB上的動點(P異于A、B),過點P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點P的△ABC的相似線,簡記為P(lx)(x為自然數(shù)).

(1)如圖①,∠A=90°,∠B=∠C,當BP=2PA時,P(l1)、P(l2)都是過點P的△ABC的相似線(其中l(wèi)1⊥BC,l2∥AC),此外,還有       條;

(2)如圖②,∠C=90°,∠B=30°,當=          時,P(lx)截得的三角形面積為△ABC面積的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


閱讀下列材料:

小華遇到這樣一個問題,如圖1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC內(nèi)部有一點P,連接PA.PB.PC,求PA+PB+PC的最小值.

小華是這樣思考的:要解決這個問題,首先應想辦法將這三條端點重合于一點的線段分離,然后再將它們連接成一條折線,并讓折線的兩個端點為定點,這樣依據(jù)“兩點之間,線段最短”,就可以求出這三條線段和的最小值了.他先后嘗試了翻折.旋轉(zhuǎn).平移的方法,發(fā)現(xiàn)通過旋轉(zhuǎn)可以解決這個問題.他的做法是,如圖2,將△APC繞點C順時針旋轉(zhuǎn)60º,得到△EDC,連接PD.BE,則BE的長即為所求.

(1)請你寫出圖2中,PA+PB+PC的最小值為       ;

(2)參考小華的思考問題的方法,解決下列問題:

①如圖3,菱形ABCD中,∠ABC=60º,在菱形ABCD內(nèi)部有一點P,請在圖3中畫出并指明長度等于PA+PB+PC最小值的線段(保留畫圖痕跡,畫出一條即可);

②若①中菱形ABCD的邊長為4,請直接寫出當PA+PB+PC值最小時PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,矩形ABCD中, BC=2,點P是線段BC上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,平移線段PE得到CF,連接EF。問:四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時BP長;若沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,已知拋物線與x軸交于點A,與y軸交于點B,動點Q從點O出發(fā),以每秒2個單位長度的速度在線段OA上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒。

問:△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在拋物線中, 拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:。

(1)求m的值;

(2)動點P從B點出發(fā),沿x軸反方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時點P的坐標。

查看答案和解析>>

同步練習冊答案