【題目】如圖,拋物線與軸交于兩點(diǎn),是以點(diǎn)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是________.
【答案】3.5
【解析】
連接BP,如圖,先解方程=0得A(4,0),B(4,0),再判斷OQ為△ABP的中位線得到OQ=BP,利用點(diǎn)與圓的位置關(guān)系,BP過圓心C時(shí),PB最大,如圖,點(diǎn)P運(yùn)動(dòng)到P′位置時(shí),BP最大,然后計(jì)算出BP′即可得到線段OQ的最大值.
連接BP,如圖,
當(dāng)y=0時(shí),=0,
解得x1=4,x2=4,則A(4,0),B(4,0),
∵Q是線段PA的中點(diǎn),
∴OQ為△ABP的中位線,
∴OQ=BP,
當(dāng)BP最大時(shí),OQ最大,
而BP過圓心C時(shí),PB最大,如圖,點(diǎn)P運(yùn)動(dòng)到P′位置時(shí),BP最大,
∵BC=∴BP′=5+2=7,
∴線段OQ的最大值是3.5,
故答案為:3.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生居家學(xué)習(xí)期間對(duì)函數(shù)知識(shí)的掌握情況,某學(xué)校數(shù)學(xué)教師對(duì)九年級(jí)全體學(xué)生進(jìn)行了一次摸底測(cè)試,測(cè)試含一次函數(shù)、二次函數(shù)和反比例函數(shù)三項(xiàng)內(nèi)容,每項(xiàng)滿分10分.現(xiàn)隨機(jī)抽取20名學(xué)生的成績(jī)(成績(jī)均為整數(shù))進(jìn)行收集、整理、描述和分析,下面給出了部分信息:
a.該20名學(xué)生一次函數(shù)測(cè)試成績(jī)?nèi)缦拢?/span>7 9 10 9 7 6 8 10 10 8 6 10 10 9 10 9 9 9 10 10
b.該20名學(xué)生總成績(jī)和二次函數(shù)測(cè)試成績(jī)情況統(tǒng)計(jì)圖:
c.該20名學(xué)生總成績(jī)平均分為25分,一次函數(shù)測(cè)試平均分為8.8分.
根據(jù)以上信息,回答下列問題:
(1)該20名學(xué)生一次函數(shù)測(cè)試成績(jī)的中位數(shù)是 ,眾數(shù)是 .
(2)若該校九年級(jí)共有400名學(xué)生,且總成績(jī)不低于26分的學(xué)生成績(jī)記為優(yōu)秀,估計(jì)該校九年級(jí)本次測(cè)試總成績(jī)優(yōu)秀的約有 人.
(3)在總成績(jī)和二次函數(shù)測(cè)試成績(jī)情況統(tǒng)計(jì)圖中,A同學(xué)的一次函數(shù)測(cè)試成績(jī)是 分;若B同學(xué)的反比例函數(shù)測(cè)試成績(jī)是8分,則B同學(xué)的一次函數(shù)測(cè)試成績(jī)是 分.
(4)一次函數(shù)、二次函數(shù)和反比例函數(shù)三項(xiàng)內(nèi)容中,學(xué)生掌握情況最不好的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線為常數(shù),)與直線都經(jīng)過兩點(diǎn),是該拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線交直線于點(diǎn),交x軸于點(diǎn)H.
(1)求此拋物線和直線的解析式;
(2)當(dāng)點(diǎn)在直線下方時(shí),求取得最大值時(shí)點(diǎn)的坐標(biāo);
(3)設(shè)該拋物線的頂點(diǎn)為直線與該拋物線的對(duì)稱軸交于點(diǎn).當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,再解答問題.
尺規(guī)作圖
已知:△ABC,D是邊AB上一點(diǎn),如圖1,
求作:四邊形DBCF,使得四邊形DBCF是平行四邊形.
小明的做法如下:
請(qǐng)你參考小明的做法,再設(shè)計(jì)一一種尺規(guī)作圖的方法(與小明的方法不同),使得畫出的四邊形DBCF是平行四邊形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的圖形W1和圖形W2.給出如下定義:在圖形W1上存在兩點(diǎn)A,B(點(diǎn)A,B可以重合),在圖形W2上存在兩點(diǎn)M,N,(點(diǎn)M于點(diǎn)N可以重合)使得AM=2BN,則稱圖形W1和圖形W2滿足限距關(guān)系
(1)如圖1,點(diǎn)C(1,0),D(-1,0),E(0,),點(diǎn)P在線段DE上運(yùn)動(dòng)(點(diǎn)P可以與點(diǎn)D,E重合),連接OP,CP.
①線段OP的最小值為_______,最大值為_______;線段CP的取值范直范圍是_____;
②在點(diǎn)O,點(diǎn)C中,點(diǎn)____________與線段DE滿足限距關(guān)系;
(2)如圖2,⊙O的半徑為1,直線(b>0)與x軸、y軸分別交于點(diǎn)F,G.若線段FG與⊙O滿足限距關(guān)系,求b的取值范圍;
(3)⊙O的半徑為r(r>0),點(diǎn)H,K是⊙O上的兩個(gè)點(diǎn),分別以H,K為圓心,1為半徑作圓得到⊙H和K,若對(duì)于任意點(diǎn)H,K,⊙H和⊙K都滿足限距關(guān)系,直接寫出r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東省)如圖,AB是⊙O的直徑,AB=,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長(zhǎng)度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)在邊(不包括端點(diǎn))過三點(diǎn)的交AB于另一點(diǎn)連結(jié)且于點(diǎn)過點(diǎn)作交于點(diǎn)連結(jié).
(1)求證:四邊形是菱形.
(2)當(dāng)時(shí),求的直徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊(duì)參加了“端午情,龍舟韻”賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(秒)之間的函數(shù)圖象如圖所示,根據(jù)圖象有以下四個(gè)判斷:
①乙隊(duì)率先到達(dá)終點(diǎn);
②甲隊(duì)比乙隊(duì)多走了126米;
③在47.8秒時(shí),兩隊(duì)所走路程相等;
④從出發(fā)到13.7秒的時(shí)間段內(nèi),甲隊(duì)的速度比乙隊(duì)的慢.
所有正確判斷的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為等邊三角形.
(1)求作:的外接圓.(不寫作法,保留作圖痕跡)
(2)射線交于點(diǎn),交于點(diǎn),過作的切線,與的延長(zhǎng)線交于點(diǎn).
①根據(jù)題意,將(1)中圖形補(bǔ)全;
②求證:;
③若,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com