如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線BD上任意一點(diǎn),連接AE,將△ABE順時(shí)針旋轉(zhuǎn)90°得到△CBF,連接EF,請(qǐng)判斷線段EF與BC之間的位置關(guān)系,并說(shuō)明理由.
考點(diǎn):旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì)
專題:探究型
分析:根據(jù)正方形的性質(zhì)得到∠DBC=45°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠EBF=90°,BE=BF,可計(jì)算出∠FBC=90°-45°=45°,則BC為等腰直角三角形EBF的頂角的平分線,根據(jù)等腰三角形的性質(zhì)即可得到
BC垂直平分EF.
解答:解:BC垂直平分EF.理由如下:
∵四邊形ABCD為正方形,
∴∠DBC=45°,
∴將△ABE順時(shí)針旋轉(zhuǎn)90°可得到△CBF,
∴∠EBF=90°,BE=BF,
∴∠FBC=90°-45°=45°,
∴BC為等腰直角三角形EBF的頂角的平分線,
∴BC垂直平分EF.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形的性質(zhì)和等腰三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了充實(shí)學(xué)生的暑假生活,我校國(guó)際都今年特推出“暢游美國(guó)東部”夏令營(yíng)活動(dòng),面向初一、初二、初三、高一招收營(yíng)員.先將報(bào)名情況繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)求高一報(bào)名的學(xué)生人數(shù)及扇形圖中初一報(bào)名學(xué)生人數(shù)所占區(qū)域的圓心角,并補(bǔ)充條形圖;
(2)得知我校今年舉行夏令營(yíng)活動(dòng)后,美國(guó)某友好學(xué)校發(fā)來(lái)邀請(qǐng),屆時(shí)特邀兩名學(xué)生代表進(jìn)行參觀訪問(wèn).學(xué)校經(jīng)過(guò)討論決定,從初一和高一年級(jí)報(bào)名學(xué)生中各選一名.請(qǐng)用列表法或畫樹狀圖的方法,求出初一的雷敏和高一的肖雨同時(shí)入選的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
(1)4(x+1)2-(2x+5)(2x-5);
(2)[x(x2y2-xy)-y(x2-x2y)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:(x-
x
x+1
)÷(1+
1
x2-1
),其中x=
1
cos45°
+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)P(a,b)滿足a•b<0,則點(diǎn)P在( 。
A、第二象限
B、第三象限
C、第一象限或第三象限
D、第二象限或第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某出租車的收費(fèi)標(biāo)準(zhǔn)是:3千米以內(nèi)(含3千米)一律收a元,超過(guò)3千米以后,每增加1千米,加收b元(不足1千米,按1千米計(jì)),小華乘這種出租車行駛了6.5千米,應(yīng)交車費(fèi)
 
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,半徑為12的⊙O中,弦AB與弦CD垂直相交于點(diǎn)E,若AB=16
2
,CD=6
15
,則OE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某校租用三輛汽車組織學(xué)生去參加中考體育測(cè)試,其中小明和王老師都可以從這三輛車中任選一輛搭乘.則小明和王老師同乘一輛車的概率是(  )
A、
1
3
B、
1
9
C、
1
2
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,對(duì)于任意△ABC,分別以它的三邊為邊長(zhǎng)作一個(gè)正方形.求證:S△AGM+S△BHP+S△CNQ=3S△ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案