【題目】已知,二次函數(shù)(m,n為常數(shù)且m≠0)
(1)若n=0,請判斷該函數(shù)的圖像與x軸的交點個數(shù),并說明理由;
(2)若點A(n+5,n)在該函數(shù)圖像上,試探索m,n滿足的條件;
(3)若點(2,p),(3,q),(4,r)均在該函數(shù)圖像上,且p<q<r,求m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個質(zhì)地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點數(shù)記為,擲第二次,將朝上一面的點數(shù)記為,則點()落在直線上的概率為:
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD,OD交BC于點F,當(dāng)S△COF:S△CDF=3:2時,求點D的坐標(biāo).
(3)如圖2,點E的坐標(biāo)為(0,),在拋物線上是否存在點P,使∠OBP=2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為 BC上的點,F(xiàn)為 CD邊上的點,且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則y與x之間的函數(shù)關(guān)系式是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形,,拋物線為常數(shù)),頂點為.
(1)拋物線經(jīng)過定點坐標(biāo)是___ __,頂點的坐標(biāo)(用的代數(shù)式表示)是____ _.
(2)若拋物線(為常數(shù))與正方形的邊有交點,則的取值范圍是___ _.
(3)若時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,點A1,A2,A3,…都在x軸上,點C1,C2,C3,…都在直線y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,則點C6的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,點為線段上一動點,沿線段由向運(yùn)動,連接,以為邊向右側(cè)作正方形,連接,設(shè)的路程即的長為,間的距離為,間的距離為.
數(shù)學(xué)興趣小組的小剛根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行探究,過程如下:
(1)根據(jù)下表中自變量的取值進(jìn)行去電,畫圖,測量,分別得到幾組對應(yīng)值,請將表格補(bǔ)充完成.
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
3 | 2.22 | 3 | 4.11 | 5.39 | 6.72 | ||
4.24 | 2.81 | 1.39 | 0 | 2.84 | 4.26 |
其中, , ;
(2)在同一平面黃子佼坐標(biāo)系中,描點 ,并畫出的函數(shù)圖像;
(3)當(dāng)為等腰三角形時,的長度約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,甲、乙兩家商場都進(jìn)行了促銷活動,如何才能更好地衡量釧銷對消費(fèi)者受益程度的大小呢?某數(shù)學(xué)小組通過合作探究發(fā)現(xiàn)用優(yōu)惠率p=(其中k代表優(yōu)惠金額,m代表顧客購買商品的總金額)可以很好地進(jìn)行衡量,優(yōu)惠率p越大,消費(fèi)者受益程度越大;反之就越小.經(jīng)統(tǒng)計,若顧客在甲、乙兩家商場購買商品的總金額都為m(200≤m<400)元時,優(yōu)惠率分別為P甲=與P乙=,它們與m的關(guān)系圖象如圖所示,其中p甲與m成反比例函數(shù)關(guān)系,p乙保持定值.
(1)求出k甲的值,并用含m的代數(shù)式表示k乙.
(2)當(dāng)購買總金額m(元)在200≤m<400的條件下時,指出甲、乙兩家商場正在采取的促銷方案分別是什么.
(3)品牌、質(zhì)量、規(guī)格等都相同的基本種商品,在甲、乙兩家商場的標(biāo)價都是m(200≤m<400)元,你認(rèn)為選擇哪家商場購買該商品花錢少些?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com