【題目】如圖,在矩形ABCD中,AD=3AB=6.點(diǎn)P是AD的中點(diǎn),點(diǎn)E在BC上,CE=2BE,點(diǎn)M、N在線段BD上,若△PMN是等腰三角形且底角與∠DEC相等,則MN=______

【答案】12

【解析】

分兩種情況:①MN為等腰△PMN的底邊時,作PFMNF,則∠PFM=∠PFN90°,由矩形的性質(zhì)得出ABCD,BCAD3AB6,∠A=∠C90°,得出ABCDBD20,證明△PDF∽△BDA,得出,求出PF3,證出CE2CD,由等腰三角形的性質(zhì)得出MFNF,∠PNF=∠DEC,證出△PNF∽△DEC,得出2,求出NF2PF6,即可得出答案;

MN為等腰△PMN的腰時,作PFBDF,由①得:PF3,MF6,設(shè)MNPNx,則FN6x,在RtPNF中,由勾股定理得出方程,解方程即可.

分兩種情況:

則①MN為等腰△PMN的底邊時,作PFMNF,如圖1所示:

則∠PFM=∠PFN90°,

∵四邊形ABCD是矩形,

ABCDBCAD3AB6,∠A=∠C90°,

ABCD2,BD20

∵點(diǎn)PAD的中點(diǎn),

PDAD

∵∠PDF=∠BDA,

∴△PDF∽△BDA,

,即

解得:PF3,

CE2BE

BCAD3BE,

BECD,

CE2CD,

∵△PMN是等腰三角形且底角與∠DEC相等,PFMN,

MFNF,∠PNF=∠DEC,

∵∠PFN=∠C90°,

∴△PNF∽△DEC,

2,

MFNF2PF6,

MN2NF12;

MN為等腰△PMN的腰時,作PFBDF,如圖2所示:

由①得:PF3MF6,

設(shè)MNPNx,則FN6x,

RtPNF中,32+(6x2x2,

解得:x,即MN;

綜上所述,MN的長為12

故答案為:12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.

1)如圖1,在ABC中,AB=ACADABC的角平分線,EF分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在5×4的方格紙中,AB在格點(diǎn)上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點(diǎn)上.

3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長交AB于點(diǎn)Q,延長EFAC于點(diǎn)N.若NAC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點(diǎn)A,B分別在x軸,y軸的負(fù)半軸上,∠ABC90°CAx軸,點(diǎn)C在函數(shù)yx0)的圖象上,若AB1,則k的值為(  )

A.1B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;

2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.

直接寫出之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

若一次性批發(fā)量不超過件,當(dāng)批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家的“一帶一路”經(jīng)濟(jì)發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進(jìn)行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計(jì)圖.

(1)抽查D廠家的零件為   件,扇形統(tǒng)計(jì)圖中D廠家對應(yīng)的圓心角為   ;

(2)抽查C廠家的合格零件為   件,并將圖1補(bǔ)充完整;

(3)通過計(jì)算說明合格率排在前兩名的是哪兩個廠家;

(4)若要從A、B、C、D四個廠家中,隨機(jī)抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小軍(AB)、小麗(CD)和小紅(EF)同時站在路燈下的筆直路線上,其中小麗和小紅的影子分別是BDFM

1)請你在圖中畫出路燈燈泡所在的位置(用點(diǎn)P表示),并畫出小軍AB此時在路燈下的影子(用線段BN表示).

2)若小麗和小紅身高都是1.7米,小軍身高1.8米,BD2米,DF3米,FM1米,求路燈高度和小軍影長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,將拋物線向右平移個單位長度,再向下平移個單位長度后,得到的拋物線,平移后的拋物線軸分別交于,兩點(diǎn),與軸交于點(diǎn).拋物線的對稱軸與拋物線交于點(diǎn).

1)請你直接寫出拋物線的解析式;(寫出頂點(diǎn)式即可)

2)求出,,三點(diǎn)的坐標(biāo);

3)在軸上存在一點(diǎn),使的值最小,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案