【題目】在直徑為10cm的⊙O中,弦AB的長為5 cm,則AB所對的圓周角是 .
【答案】45°或135°
【解析】解:連結(jié)OA、OB,∠C和∠D為AB所對的圓周角,如圖,
∵OA=OB=5,AB=5 ,
∴OA2+OB2=AB2 ,
∴△OAB為直角三角形,
∴∠AOB=90°,
∴∠C= ∠AOB=45°,
∴∠D=180°∠C=135°.
即AB所對的圓周角為45°或135°.
所以答案是45°或135°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
⑴.在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1.
⑵.寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫出答案).
A1 B1 C1 ;
⑶.△A1B1C1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,則S2的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2002年8月在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D,F(xiàn)分別在AC,BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A,B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx-6經(jīng)過點(diǎn)A(4,0),直線y=-3x+3與x軸交于點(diǎn)B,且兩直線交于點(diǎn)C.
(1)求k的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BD=CF,BE=CD,∠EDF=a,則下列結(jié)論正確的是( 。
A. a+∠A=90° B. a+∠A=180° C. 2a+∠A=90° D. 2a+∠A=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=BC.延長DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com