【題目】已知:如圖,∠1=∠2,∠3=∠E,試說明:∠A=∠EBC,(請按圖填空,并補理由,)
證明:∵∠1=∠2(已知),
∴______∥______,________
∴∠E=∠______,________
又∵∠E=∠3(已知),
∴∠3=∠______(等量代換),
∴______∥______(內(nèi)錯角相等,兩直線平行),
∴∠A=∠EBC,________
【答案】DB EC 內(nèi)錯角相等,兩直線平行 4 兩直線平行,內(nèi)錯角相等 4 AD BE 兩直線平行,同位角相等
【解析】
根據(jù)平行線的判定得出DB∥EC,根據(jù)平行線的性質(zhì)得出∠E=∠4,求出∠3=∠4,根據(jù)平行線的判定得出AD∥BE即可.
證明:∵∠1=∠2(已知),
∴DB∥EC(內(nèi)錯角相等,兩直線平行),
∴∠E=∠4(兩直線平行,內(nèi)錯角相等),
又∵∠E=∠3(已知),
∴∠3=∠4( 等量代換),
∴AD∥BE(內(nèi)錯角相等,兩直線平行),
∴∠A=∠EBC(兩直線平行,同位角相等),
故答案為:DB,EC,內(nèi)錯角相等,兩直線平行,4,兩直線平行,內(nèi)錯角相等,4,AD,BE,兩直線平行,同位角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,則下列結(jié)論正確的是( )
①△ABD≌△ACD;②∠B=∠C;③∠BAD=∠CAD;④AD⊥BC
A. ①②③B. ②③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點G是CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于未知數(shù)為 x,y 的二元一次方程組,如果方程組的解 x,y 滿足 ,我們就說方程組的解 x 與 y 具有“鄰好關(guān)系”.
(1) 方程組的解x與y是否具有“鄰好關(guān)系”? 說明你的理由;
(2) 若方程組的解x與y具有“鄰好關(guān)系”,求m的值;
(3) 未知數(shù)為x,y的方程組,其中a與x,y都是正整數(shù),該方程組的解x與y是否具有“鄰好關(guān)系”? 如果具有,請求出a的值及方程組的解;如果不具有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準(zhǔn)備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設(shè)移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點O是原點,頂點B在y軸上,兩條對角線AC、OB的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點C.
(1)寫出點A的坐標(biāo),并求k的值;
(2)將菱形OABC沿y軸向下平移多少個單位長度后點A會落在該反比例函數(shù)的圖象上?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com