【題目】如圖1,2在矩形紙片ABCD中,AD=6AB=9.點(diǎn)M,N分別在AB,DC上(M不與AB重合,N不與CD重合),現(xiàn)以MN為折痕,將矩形紙片ABCD折疊.

1)當(dāng)B 點(diǎn)落在DC上時(如圖2),求證:MNB是等腰三角形;

2)當(dāng)B點(diǎn)與D點(diǎn)重合時,試求MNB的面積;

3)當(dāng)B點(diǎn)與AD的中點(diǎn)重合時,試求折痕MN的長.

【答案】1)證明見解析;(2SMNB=19.5;(3MN=2.

【解析】試題分析:1)先判斷出AMDN,進(jìn)而得出∠BNM=BMN=NMH,即可得出結(jié)論;

2)先根據(jù)勾股定理求出DN,再用三角形得面積公式即可得出結(jié)論;

3)先根據(jù)勾股定理求出BH,再判斷出ABH∽△EMN即可得出結(jié)論.

試題解析:1)如答圖1

∵四邊形AHGD是矩形 ,

AMDN,

∴∠BNM=BMN=MNH,

MNB是等腰三角形.

2)如答圖2,當(dāng)點(diǎn)B與點(diǎn)D重合時,

設(shè)MB=MF=x,則AM=9-x,

由勾股定理得62+9-x2=x2,解得x=6.5,

MD=ND=6.5,

SMNB=×6×6.5=19.5.

3)如答圖3,當(dāng)點(diǎn)BAD的中點(diǎn)重合時,連接BHMN于點(diǎn)F,過點(diǎn)NNEAH于點(diǎn)E

AD=6,

AB=DB=3,

BH2=32+92.

BH=3.

NM垂直平分HBNEAH,

∴∠MNE=AHB.

∵∠A=NEM,

∴△ABHAHB.

.

.

MN=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援災(zāi)區(qū),某校愛心活動小組準(zhǔn)備用籌集的資金購買A、B兩種型號的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價比A型學(xué)習(xí)用品的單價多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A、B兩種學(xué)習(xí)用品的單價各是多少元?

2)若購買這批學(xué)習(xí)用品的費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村莊計劃建造A,B兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題.兩種型號沼氣池的占地面積和可供使用農(nóng)戶數(shù)見下表:

型號

占地面積

(單位:m2/

可供使用農(nóng)戶數(shù)

(單位:戶/

A

15

18

B

20

30

已知可供建造沼氣池的占地面積不超過365m2,該村農(nóng)戶共有492戶.

(1)如何合理分配建造A,B型號沼氣池的個數(shù)才能滿足條件?滿足條件的方案有幾種?通過計算分別寫出各種方案.

(2)請寫出建造A、B兩種型號的沼氣池的總費(fèi)用y和建造A沼氣池個數(shù)x之間的函數(shù)關(guān)系式;

(3)若A型號沼氣池每個造價2萬元,B型號沼氣池每個造價3萬元,試說明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費(fèi)用需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,射線,點(diǎn)在射線上(不與點(diǎn)重合),連接,過點(diǎn)的垂線交的延長線于點(diǎn)

1)如圖①,若,且,求的度數(shù);

2)如圖②,若,當(dāng)點(diǎn)在射線上運(yùn)動時,之間有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并加以證明.

3 如圖③,在(2)的條件下,連接,設(shè)與射線的交點(diǎn)為,,當(dāng)點(diǎn)在射線上運(yùn)動時,之間有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,且DEAC,AEBD

1)求證:四邊形AODE是矩形.

2)若AB=5,BD=8,求矩形AODE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+bx+c的頂點(diǎn)P的坐標(biāo)為(n,n2+2n+1)(n≥1.

1)求bn,cn之間的關(guān)系式;

2)若拋物線y=-x2+bx+cx軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)PAB的距離等于線段AB長的2倍,求此拋物線y=-x2+bx+c的解析式;

3)設(shè)拋物線y=-x2+bx+cy軸交于點(diǎn)DO為原點(diǎn),矩形OEFD的頂點(diǎn)E,F分別在x軸和該拋物線上,當(dāng)矩形OEFD的面積為20時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列有理數(shù)大小關(guān)系判斷正確的是( 。

A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,直線y1=-2x+3和直線y2=mx-1分別交y軸于點(diǎn)A,B,兩直線交于點(diǎn)C(1,n).

(1)m,n的值;

(2)求ΔABC的面積;

(3)請根據(jù)圖象直接寫出:當(dāng)y1<y2,自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案