【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線(xiàn)的解析式及點(diǎn)C的坐標(biāo);
(2)直線(xiàn)y=﹣x﹣2與該拋物線(xiàn)在第四象限內(nèi)交于點(diǎn)D,與x軸交于點(diǎn)F,連接AC,CD,線(xiàn)段AC與線(xiàn)段DF交于點(diǎn)G,求證:△AGF≌△CGD;
(3)直線(xiàn)y=m(m>0)與該拋物線(xiàn)的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè)),點(diǎn)M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)M′,點(diǎn)H的坐標(biāo)為(1,0),若四邊形NHOM′的面積為,求點(diǎn)H到OM′的距離d.
【答案】(1) y=x2﹣x﹣3,C(0,-3);(2)見(jiàn)解析;(3)
【解析】
(1)根據(jù)拋物線(xiàn)y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點(diǎn),可得拋物線(xiàn)的解析式;
(2)根據(jù)F(-2,0),A(-1,0),可得AF=1,再根據(jù)點(diǎn)D的坐標(biāo)為(1,-3),點(diǎn)C的坐標(biāo)為(0,-3),可得CD∥x軸,CD=1,再根據(jù)∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;
(3)根據(jù)軸對(duì)稱(chēng)的性質(zhì)得出OH=1=M'N,進(jìn)而判定四邊形OM'NH是平行四邊形,再根據(jù)四邊形OM'NH的面積為,求得OP=,再根據(jù)點(diǎn)M的坐標(biāo)為(,),得到PM'= Rt△OPM'中,運(yùn)用勾股定理可得OM'=,最后根據(jù)OM'×d=,即可得到d=.
(1)∵拋物線(xiàn)y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點(diǎn),
∴,
解得,
∴該拋物線(xiàn)的解析式y=x2﹣x﹣3.
令x=0,則y=﹣3,
∴C(0,﹣3);
(2)證明:∵直線(xiàn)EF的解析式為y=﹣x﹣2,
∴當(dāng)y=0時(shí),x=﹣2,
∴F(﹣2,0),OF=2,
∵A(﹣1,0),
∴OA=1,
∴AF=2﹣1=1,
由解得,,
∵點(diǎn)D在第四象限,
∴點(diǎn)D的坐標(biāo)為(1,﹣3),
∵點(diǎn)C的坐標(biāo)為(0,﹣3),
∴CD∥x軸,CD=1,
∴∠AFG=∠CDG,∠FAG=∠DCG,
在△AGF與△CGD中
∴△AGF≌△CGD(ASA);
(3)∵拋物線(xiàn)的對(duì)稱(chēng)軸為x=﹣=,直線(xiàn)y=m(m>0)與該拋物線(xiàn)的交點(diǎn)為M,N,
∴點(diǎn)M、N關(guān)于直線(xiàn)x=對(duì)稱(chēng),
設(shè)N(t,m),則M(1﹣t,m),
∵點(diǎn) M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)M',
∴M'(t﹣1,m),
∴點(diǎn)M'在直線(xiàn)y=m上,
∴M'N∥x軸,
∴M'N=t﹣(t﹣1)=1,
∵H(1,0),
∴OH=1=M'N,
∴四邊形OM'NH是平行四邊形,
設(shè)直線(xiàn)y=m與y軸交于點(diǎn)P,
∵四邊形OM'NH的面積為,
∴OH×OP=1×m=,即m=,
∴OP=,
當(dāng)x2﹣x﹣3=時(shí),
解得x1=﹣,x2=,
∴點(diǎn)M的坐標(biāo)為(﹣,),
∴M'(,),即PM'=,
∴Rt△OPM'中,OM'==,
∵四邊形OM'NH的面積為 ,
∴OM'×d=,
∴d=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)時(shí),的取值范圍;
(3)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長(zhǎng)交于,延長(zhǎng)交于,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出如圖中的四個(gè)角,使寫(xiě)出的每一個(gè)角的大小都等于旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB:BC=3:4,點(diǎn)E是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過(guò)點(diǎn)E的直線(xiàn)MN折疊,使得點(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線(xiàn)AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx﹣3與直線(xiàn)y=x+3交于點(diǎn)A(m,0)和點(diǎn)B(2,n),與y軸交于點(diǎn)C.
(1)求m,n的值及拋物線(xiàn)的解析式;
(2)在圖1中,把△AOC平移,始終保持點(diǎn)A的對(duì)應(yīng)點(diǎn)P在拋物線(xiàn)上,點(diǎn)C,O的對(duì)應(yīng)點(diǎn)分別為M,N,連接OP,若點(diǎn)M恰好在直線(xiàn)y=x+3上,求線(xiàn)段OP的長(zhǎng)度;
(3)如圖2,在拋物線(xiàn)上是否存在點(diǎn)Q(不與點(diǎn)C重合),使△QAB和△ABC的面積相等?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是一幅2018年俄羅斯世界杯的長(zhǎng)方形宣傳畫(huà),長(zhǎng)為4m,寬為2m.為測(cè)量畫(huà)上世界杯圖案的面積,現(xiàn)將宣傳畫(huà)平鋪在地上,向長(zhǎng)方形宣傳畫(huà)內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長(zhǎng)方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過(guò)大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在世界杯圖案中的頻率穩(wěn)定在常數(shù)0.4左右.由此可估計(jì)宣傳畫(huà)上世界杯圖案的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開(kāi)機(jī)后,飲水機(jī)自動(dòng)開(kāi)始加熱(此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)滿(mǎn)足一次函數(shù)關(guān)系),當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開(kāi)始下降,此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)成反比例關(guān)系,當(dāng)水溫降至20C時(shí),飲水機(jī)又自動(dòng)開(kāi)始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明上午八點(diǎn)將飲水機(jī)在通電開(kāi)機(jī)(此時(shí)飲水機(jī)中原有水的溫度為20℃后即外出散步,預(yù)計(jì)上午八點(diǎn)半散步回到家中,回到家時(shí),他能喝到飲水機(jī)內(nèi)不低于30℃的水嗎?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)圖象過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C在y軸正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com