【題目】如圖,△ABC中,AB=BC,∠ABC=120°,AC=2,⊙O是△ABC的外接圓,D是優(yōu)弧AmC上任意一點(不包括A,C),記四邊形ABCD的周長為y,BD的長為x,則y關(guān)于x的函數(shù)關(guān)系式是( 。
A. y=x+4 B. y=x+4 C. y=x2+4 D. y=x2+4
【答案】B
【解析】分析:作輔助線,構(gòu)建全等三角形和等邊三角形,證明Rt△AGB≌Rt△CFB得:AG=CF,根據(jù)30°角的笥質(zhì)表示DF和DG的長,計算四邊形ABCD的周長即可.
詳解:連接OB交AC于E,連接OC、OB,
過B作BG⊥AD,BF⊥CD,交DA的延長線于G,交CD于F,
∵AB=BC,
∴,
∴∠BDA=∠BDC,
∴BG=BF,
在Rt△AGB和Rt△CFB中,
∵,
∴Rt△AGB≌Rt△CFB,
∴AG=FC,
∵,
∴OB⊥AC,EC=AC=×2=,
在△AOB和△COB中,
∵,
∴△AOB≌△COB(SSS),
∴∠ABO=∠OBC=∠ABC=×120°=60°,
∵OB=OC,
∴△OBC是等邊三角形,
∴∠BOC=60°,
∴∠BDC=∠ADB=30°,
Rt△BDF中,BD=x,
∴DF=x,
同理得:DG=x,
∴AD+DC=AD+DF+FC=DG+DF=x+x=x,
Rt△BEC中,∠BCA=30°,
∴BE=1,BC=2,
∴AB=BC=2,
∴y=AB+BC+AD+DC=2+2+x=x+4,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…依次進行下去,則點A2017的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有4張正面分別標有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個被均勻分成4份的轉(zhuǎn)盤,上面分別標有數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,指針所指的數(shù)字記為(若指針指在分割線上則重新轉(zhuǎn)一次),則點落在拋物線與軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】潮州市某學校為了改善辦學條件,購置一批電子白板和臺式電腦合共24臺.經(jīng)招投標,一臺電子白板每臺9000元,一臺臺式電腦每臺3000元,設(shè)學校購買電子白板和臺式電腦總費用為元,購買了臺電子白板,并且臺式電腦的臺數(shù)不超過電子白板臺數(shù)的3倍.
(1)請求出與的函數(shù)解析式,并直接寫出的取值范圍
(2)請問當購買多少臺電子白板時,學校購置電子白板和臺式電腦的總費用最少,最少多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四個數(shù)分別是,滿足,(且為正整數(shù),).
若.
①當時,求的值;
②對于給定的有理數(shù),滿足,請用含的代數(shù)式表示;
若 ,,且,試求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.
(1)試判斷四邊形AEBO的形狀,并說明你的理由;
(2)求證:EO=DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,把△BCD沿對角線BD折疊得到△BED,線段BE與AD相交于點P,若AB=2,BC=4.
(1)求BD長度;(2)求點P到BD的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com