【題目】如下圖,正方形ABCD的邊AB在x軸上,A(﹣4,0),B(﹣2,0),定義:若某個拋物線上存在一點P,使得點P到正方形ABCD四個頂點的距離相等,則稱這個拋物線為正方形ABCD的“友好拋物線”.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好拋物線”,則n的值為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,AE=EB,MN=1,線段MN的兩端在CB,CD上滑動,當(dāng)CM為何值時,△AED與△CMN相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批乒乓球的質(zhì)量檢驗結(jié)果如下:
抽取的乒乓球數(shù)n | 200 | 500 | 1000 | 1500 | 2000 |
優(yōu)等品頻數(shù)m | 188 | 471 | 946 | 1426 | 1898 |
優(yōu)等品頻率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)畫出這批乒乓球“優(yōu)等品”頻率的折線統(tǒng)計圖;
(2)這批乒乓球“優(yōu)等品”的概率的估計值是多少?
(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.
①求從袋中摸出一個球是黃球的概率;
②現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于, 問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當(dāng)AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線形拱橋,當(dāng)拱頂離水面2m時,水面寬4m,建立如圖所示的平面直角坐標(biāo)系:
(1)求拱橋所在拋物線的解析式;
(2)當(dāng)水面下降1m時,則水面的寬度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C,D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時,求點P的坐標(biāo);
(3)拋物線上是否存在一點Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.
(1)如圖1,當(dāng)t=3時,求DF的長.
(2)如圖2,當(dāng)點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com