【題目】操作探究:
數學研究課上,老師帶領大家探究《折紙中的數學問題》時,出示如圖1所示的長方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫一條截線段MN,將紙片沿MN折疊,MB與DN交于點K,得到△MNK.如圖2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改變折痕MN位置,△MNK始終是 三角形,請說明理由;
應用:
(3)愛動腦筋的小明在研究△MNK的面積時,發(fā)現KN邊上的高始終是個不變的值.根據這一發(fā)現,他很快研究出△KMN的面積最小值為,此時∠1的大小可以為 °
(4)小明繼續(xù)動手操作,發(fā)現了△MNK面積的最大值.請你求出這個最大值.
【答案】(1)、40;(2)、等腰;(3)、45°或135°(4)、最大值為1.3.
【解析】
試題分析:(1)、根據矩形的性質和折疊的性質求出∠KNM,∠KMN的度數,根據三角形內角和即可求解;
(2)、利用翻折變換的性質以及兩直線平行內錯角相等得出KM=KN;(3)、利用當△KMN的面積最小值為時,KN=BC=1,故KN⊥B′M,得出∠1=∠NMB=45°,同理當將紙條向下折疊時,∠1=∠NMB=135°;(4)、分情況一:將矩形紙片對折,使點B與D重合,此時點K也與D重合;情況二:將矩形紙片沿對角線AC對折,此時折痕即為AC兩種情況討論求解.
試題解析:(1)、如圖1, ∵四邊形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°.
(2)、等腰, 理由:∵AB∥CD,∴∠1=∠MND, ∵將紙片沿MN折疊, BGFYTTTQ ∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
(3)、如圖2,當△KMN的面積最小值為時,KN=BC=1,故KN⊥B′M, ∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理當將紙條向下折疊時,∠1=∠NMB=135°,
(4)、分兩種情況:
情況一:如圖3,將矩形紙片對折,使點B與D重合,此時點K也與D重合. MK=MB=x,則AM=5﹣x.
由勾股定理得12+(5﹣x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND=×1×2.6=1.3.
情況二:如圖4,將矩形紙片沿對角線AC對折,此時折痕即為AC. MK=AK=CK=x,則DK=5﹣x.
同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK=×1×2.6=1.3. △MNK的面積最大值為1.3.
科目:初中數學 來源: 題型:
【題目】某商店經銷一種銷售成本為每千克40元的水產品.據市場分析,若按每千克50元銷售,一個月能售出500kg;銷售單價每漲1元,月銷售量就減少10kg.針對這種水產品的銷售情況,請解答以下問題:
(1)設銷售單價為每千克x元,月銷售利潤為y元,求y與x的函數關系式;
(2)在使顧客獲得實惠的條件下,要使月銷售利潤達到8000元,銷售單價應定為多少?
(3) 在月銷售成本不超過10000元的情況下,銷售單價定為多少時,月銷售利潤達到最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用反證法證明命題“四邊形中至少有一個角是鈍角或直角”,應先假設( )
A.四邊形中沒有一個角是鈍角或直角
B.四邊形中至多有一個鈍角或直角
C.四邊形中沒有一個角是銳角
D.四邊形中沒有一個角是鈍角
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,以AC為底邊作等腰三角形△ACD,AD=CD,過點D作DE⊥AC,垂足為F,DE與AB相交于點E,連接CE.
(1)求證:AE=CE=BE;
(2)若AB=15cm,BC=9cm,點P是射線DE上的一點.則當點P為何處時,△PBC的周長最小,并求出此時△PBC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,A、B兩城市相距100km. 現計劃在這兩座城市間修筑一條高速公路(即線段AB),經測量,森林保護中心P在A城市的北偏東30°和B城市的北偏西45°的方向上. 已知森林保護區(qū)的范圍在以P點為圓心,50km為半徑的圓形區(qū)域內. 請問:計劃修筑的這條高速公路會不會穿越保護區(qū). 為什么?(參考數據:,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角平面坐標系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB為直角邊在AB邊的上方作等腰直角△ABE,則點E的坐標是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com