【題目】某快遞公司每天上午9:00~10:00為集中攬件和派件時段,甲倉庫用來攬收快件,乙倉庫用來派發(fā)快件,該時段內(nèi)甲,乙兩倉庫的快件數(shù)量(件)與時間(分)之間的函數(shù)圖象如圖所示,那么當(dāng)兩倉庫快遞件數(shù)相同時,此刻的時間為( )
A. 9:15B. 9:20C. 9:25D. 9:30
【答案】B
【解析】
分別求出甲、乙兩倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式,求出兩條直線的交點坐標(biāo)即可.
設(shè)甲倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式為:y1=k1x+40,根據(jù)題意得60k1+40=400,解得k1=6,
∴y1=6x+40;
設(shè)乙倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)關(guān)系式為:y2=k2x+240,根據(jù)題意得60k2+240=0,解得k2=-4,
∴y2=-4x+240,
聯(lián)立,解得,
∴此刻的時間為9:20.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程時,配方有錯誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF.BE與AC相交于點M,與CF相交于點D,AB與CF相交于點N,∠EAC=∠FAB.有下列結(jié)論:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點,AE與BD相交于點F,連接DE.
(1)求證:△ABE≌△BCD;
(2)判斷線段AE與BD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;
(3)若CD=1,試求△AED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與一次函數(shù)y=3x的圖象相交于點A,其橫坐標(biāo)為2.
(1)求k的值;
(2)點B為此反比例函數(shù)圖象上一點,其縱坐標(biāo)為3.過點B作CB∥OA,交x軸于點C,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朱錦汶同學(xué)學(xué)習(xí)了全等三角形后,利用全等三角形繪制出了下面系列圖案,第(1)個圖案由2個全等的三角形組成,第(2)個圖案由4個全等的三角形組成,(3)個圖案由7個全等的三角形組成,(4)個圖案由12個全等的三角形組成.則第(8)個圖案中全等三角形的個數(shù)為( )
A.52B.136C.256D.264
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在坐標(biāo)平面內(nèi),等腰直角中,,,點的坐標(biāo)為,點的坐標(biāo)為,交軸于點.
(1)求點的坐標(biāo);
(2)求點的坐標(biāo);
(3)如圖,點在軸上,當(dāng)的周長最小時,求出點的坐標(biāo);
(4)在直線上有點,在軸上有點,求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了積極響應(yīng)國家新農(nóng)村建設(shè),某市鎮(zhèn)政府采用了移動宣講的形式進(jìn)行宣傳動員.如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為800米,假使宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:
(1)請問村莊能否聽到宣傳,并說明理由;
(2)如果能聽到,已知宣講車的速度是每分鐘300米,那么村莊總共能聽到多長時間的宣傳?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com