【題目】如圖是樓梯一部分示意圖,樓梯臺(tái)階寬度均為,高度均為,且,均與樓面垂直,點(diǎn),分別是,的中點(diǎn),,

1)判斷的位置關(guān)系,并說(shuō)明理由;

2)求的值;

3)求點(diǎn)到水平樓面的距離(精確到).

【答案】1,理由見(jiàn)解析;(22;(3

【解析】

1)由FB平行且相等,得出四邊形是平行四邊形,進(jìn)而得出;

2)延長(zhǎng)、交于點(diǎn)K,連接,在Rt中,求出tan,根據(jù)平行線(xiàn)的性質(zhì)得出∠EFP=,由此得解;

3)過(guò)點(diǎn)P,交AF于點(diǎn),根據(jù)的值得出的數(shù)量關(guān)系,在Rt中,運(yùn)用勾股定理求出,進(jìn)而求出到水平樓面的距離.

1,理由:

,均與樓面垂直

又∵

=

∴四邊形是平行四邊形

2)如圖,延長(zhǎng),交于點(diǎn)K,連接,

,均與樓面垂直,

∴△是直角三角形,

∵樓梯臺(tái)階寬度均為,,分別是,的中點(diǎn),

KA=

∵樓梯高度均為

Rt中,tan=

,

∴∠EFP=

易證

∴∠=

tanEFP=tan=2

3)過(guò)點(diǎn)P,交AF于點(diǎn),

Rt中,tanEFP=2

根據(jù)勾股定理,,即

cm

P到水平樓面的距離為16×5+15-=95-91.4cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的工兵、連長(zhǎng)、地雷比較大小,共有6個(gè)棋子,分別為1個(gè)工兵,2個(gè)連長(zhǎng)3個(gè)地雷游戲規(guī)則如下:①游戲時(shí),將棋反面朝上,兩人隨機(jī)各摸一個(gè)棋子進(jìn)行比賽,先摸者摸出的棋不放回;②工兵地雷地雷連長(zhǎng),連長(zhǎng)工兵;③相同棋子不分勝負(fù).

1)若小方先摸,則小方摸到排長(zhǎng)的事件是 ;若小方先摸到了連長(zhǎng),小輝在剩余的5個(gè)棋子中隨機(jī)摸一個(gè),則這一輪中小方勝小輝的概率為

2)如果先拿走一個(gè)連長(zhǎng),在剩余的5個(gè)棋子中小方先摸一個(gè)棋子,然后小輝在剩余的4個(gè)棋子中隨機(jī)摸一個(gè),求這一輪中小方獲勝的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ABx軸交于點(diǎn)A1,0),與y軸交于點(diǎn)B0,-2).

1)求直線(xiàn)AB的解析式;

2)直線(xiàn)AB上是否存在點(diǎn)C,使△BOC的面積為2?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P(xy),請(qǐng)用“列表法”或“樹(shù)狀圖法”求點(diǎn)P(xy)在函數(shù)y=-x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的頂點(diǎn),,若將先沿軸進(jìn)行第一次對(duì)稱(chēng)變換,所得圖形沿軸進(jìn)行第二次對(duì)稱(chēng)變換,軸對(duì)稱(chēng)變換的對(duì)稱(chēng)軸遵循軸、軸、軸、軸…的規(guī)律進(jìn)行,則經(jīng)過(guò)第2018次變換后,頂點(diǎn)坐標(biāo)為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年底,2020年初我國(guó)爆發(fā)了新冠肺炎疫情,為了增加學(xué)生對(duì)疫情和肺炎的預(yù)防知識(shí)的了解,某學(xué)校利用網(wǎng)絡(luò)開(kāi)展了相關(guān)知識(shí)的宣傳教育活動(dòng),為了解這次的宣傳效果,學(xué)校從全校3600名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行知識(shí)測(cè)試(滿(mǎn)分100分,得分均為整數(shù)),并根據(jù)這200人的測(cè)試成績(jī),制訂如下統(tǒng)計(jì)圖表:

(1) , ,成績(jī)最好的等級(jí)A所占的百分比;

(2)張亮在這次測(cè)試中成績(jī)?yōu)?/span>85分,你認(rèn)為85分一定是這200名學(xué)生知識(shí)測(cè)試成績(jī)的中位數(shù)嗎?請(qǐng)簡(jiǎn)要說(shuō)明理由;

(3)如果80分以上(包括80)為優(yōu)秀,請(qǐng)估計(jì)全校3600名學(xué)生中成績(jī)優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是反比例函數(shù)的圖象,點(diǎn),分別在圖象的兩支上,以為對(duì)角線(xiàn)作矩形軸.

1)當(dāng)線(xiàn)段過(guò)原點(diǎn)時(shí),分別寫(xiě)出,的一個(gè)等量關(guān)系式;

2)當(dāng)、兩點(diǎn)在直線(xiàn)上時(shí),求矩形的周長(zhǎng);

3)當(dāng)時(shí),探究的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點(diǎn)DBC上,且CD=3DB,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則tanBED的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,圖1,圖2分別是某款高壓電塔的實(shí)物圖和示意圖電塔的底座AB與地面平齊,DF表示電塔頂端D到地面的距離,已知AF的長(zhǎng)是2米,支架AC與地面夾角∠BAC86°,頂端支架DC長(zhǎng)10米,DC與水平線(xiàn)CE之間夾角∠DCE45°,求電塔的高度DF.(sin86°=0.998cos86°=0.070,tan86°=14.300,1.4,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案