【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+與x軸、y軸分別交于點B、A,與直線y=相交于點C.動點P從O出發(fā)在x軸上以每秒5個單位長度的速度向B勻速運動,點Q從C出發(fā)在OC上以每秒4個單位長度的速度,向O勻速運動,運動時間為t秒(0<t<2).
(1)直接寫出點C坐標(biāo)及OC、BC長;
(2)連接PQ,若△OPQ與△OBC相似,求t的值;
(3)連接CP、BQ,若CP⊥BQ,直接寫出點P坐標(biāo).
【答案】(1)C(,),8,10;(2)t的值為或1s時,△OPQ與△OBC相似;(3)t=s時,PC⊥BQ.
【解析】
(1)利用待定系數(shù)法,方程組、兩點間距離公式即可解決問題;
(2)分兩種情形①當(dāng)OPOC=OQOB時,△OPQ∽△OCB,②當(dāng)OPOB=OQOC時,△OPQ∽△OBC,構(gòu)建方程即可解決問題;
(3)如圖作PH⊥OC于H.首先證明∠OCB=90°,推出∠PCH=∠CBQ時,PC⊥BQ.由PH∥BC,可得OPOB=PHBC=OHOC,可得5t10=PH6=OH8,推出PH=3t,OH=4t,根據(jù)tan∠PCH=tan∠CBQ,構(gòu)建方程即可解決問題.
(1)對于直線y=﹣x+,令x=0,得到y=,
∴A(0,),
令y=0,則x=10,
∴B(10,0),
由,解得,
∴C(,).
∴OC==8,
BC==10.
(2)①當(dāng)時,△OPQ∽△OCB,
∴,
∴t=.
②當(dāng)時,△OPQ∽△OBC,
∴,
∴t=1,
綜上所述,t的值為或1s時,△OPQ與△OBC相似.
(3)如圖作PH⊥OC于H.
∵OC=8,BC=6,OB=10,
∴OC2+BC2=OB2,
∴∠OCB=90°,
∴當(dāng)∠PCH=∠CBQ時,PC⊥BQ.
∵∠PHO=∠BCO=90°,
∴PH∥BC,
∴,
∴,
∴PH=3t,OH=4t,
∴tan∠PCH=tan∠CBQ,
∴,
∴t=或0(舍棄),
∴t=s時,PC⊥BQ.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,邊AD與邊BC交于點P(不與點B,C重合),點B,E在AD異側(cè),I為△APC的內(nèi)心.
(1)求證:∠BAD=∠CAE;
(2)設(shè)AP=x,請用含x的式子表示PD,并求PD的最大值;
(3)當(dāng)AB⊥AC時,∠AIC的取值范圍為m°<∠AIC<n°,分別直接寫出m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三角形分割為四個都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個三角形再分別順次連接它的各邊中點所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個小三角形都是全等三角形(為正整數(shù)),設(shè)此時小三角形的面積為.請寫出一個反映,,之間關(guān)系的等式________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,給出了格點和(頂點是網(wǎng)格線的交點).點、坐標(biāo)為,.
觀察圖形填空:是由繞________點順時針旋轉(zhuǎn)________度得到的;
把中的圖形作為一個新的”基本圖形“,將新的基本圖形繞點順時針旋轉(zhuǎn)度,請作出旋轉(zhuǎn)后的圖形,其中,、、、的對應(yīng)點分別為、、、.依次連接、、、,則四邊形的形狀為________;
以點為位似中心,位似比為(原圖與新圖對應(yīng)邊的比為),作出四邊形的位似圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.南方某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)査,毎人必選一種且只能選一種口味,并將調(diào)査情況繪制成如下兩幅統(tǒng)計圖(尚不完整):
請根據(jù)以上信息冋答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)求扇形統(tǒng)計圖中C所對圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于(2,0)、(1,0),與y軸交于C,直線l1經(jīng)過點C且平行于x軸,與拋物線的另一個交點為D,將直線l1向下平移t個單位得到直線l2,l2與拋物線交于A、B兩點.
(1)求拋物線解析式及點C的坐標(biāo);
(2)當(dāng)t=2時,探究△ABC的形狀,并說明理由;
(3)在(2)的條件下,點M(m,0)在x軸上自由運動,過M作MN⊥x軸,交直線BC于P,交拋物線于N,若三個點M、N、P中恰有一個點是其他兩個點連線段的中點(三點重合除外),則稱M、N、P三點為“共諧點”,請直接寫出使得M、P、N三點為“共諧點”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,IB,IC分別平分∠ABC,∠ACB,過I點作DE∥BC,分別交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC,其中正確的是: ___________(只需填寫序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)要求回答下列問題:
(1)點A關(guān)于y軸對稱點A′的坐標(biāo)是 ;點B關(guān)于y軸對稱點B′的坐標(biāo)是
(2)作出△ABC關(guān)于y軸對稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com