【題目】如圖,正方形ABCD的邊長為10,點(diǎn)E、F、G、H分別在AB、BC、CD、DA上,且滿足AE∶BF∶CG∶DH=1∶2∶3∶4. 問當(dāng)AE長為多少時(shí),四邊形EFGH的面積最小?并求出這個最小值.
【答案】當(dāng)AE長為2.5時(shí),四邊形EFGH的面積的最小值為37.5
【解析】
設(shè)AE=x,則BF=2x,CG=3x,DH=4x,BE=10-x,CF=10-2 x,DG=10-3 x,AH=10-4 x,根據(jù)S四邊形EFGH=S正方形ABCD-S△AEH-S△BEF-S△CFG-S△DGH列式后根據(jù)二次函數(shù)的性質(zhì)進(jìn)行求解即可得.
設(shè)AE=x,則BF=2x,CG=3x,DH=4x,BE=10-x,CF=10-2 x,DG=10-3 x,AH=10-4 x,
∴S四邊形EFGH=S正方形ABCD-S△AEH-S△BEF-S△CFG-S△DGH
=102-x(10-4x)- ·2x(10-x)- ·3x(10-2x)- ·4x(10-3x)
=10x2-50x+100,
∵=2.5,=37.5,
∴當(dāng)AE長為2.5時(shí),四邊形EFGH的面積的最小值為37.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點(diǎn)坐標(biāo)為(2,2),l1⊥l2,l1.l2分別交x軸和y軸于A點(diǎn)和B點(diǎn),則四邊形OAPB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連結(jié)BE交AC于F,連結(jié)FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD②△FED與△DEB③△CFD與△ABG④△ADF與△CFB中相似的為( )
A. ①④B. ①②C. ②③④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)G是BC延長線上一點(diǎn),AG與BD交于點(diǎn)E,與DC交于點(diǎn)F,則圖中相似三角形共有幾對?分別寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A = 50°,∠D =10°,則∠P的度數(shù)為( )
A.15°B.20°C.25°D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在任意四邊形ABCD中,AC,BD是對角線,E、F、G、H分別是線段BD、BC、AC、AD上的點(diǎn),對于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動課中,通過動手實(shí)踐,探索出如下結(jié)論,其中錯誤的是( )
A. 當(dāng)E,F,G,H是各條線段的中點(diǎn)時(shí),四邊形EFGH為平行四邊形
B. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AB=CD時(shí),四邊形EFGH為菱形
D. 當(dāng)E,F,G,H不是各條線段的中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
課外興趣小組活動時(shí),老師提出了如下問題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
(初步運(yùn)用)
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
(靈活運(yùn)用)
如圖3,在△ABC中,∠A=90°,D為BC中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年5月以來昆明高溫天氣創(chuàng)歷史新高,市民戲稱昆明“春城”變“夏城”,百姓對電風(fēng)扇的需求量比往年明顯增加.某超市銷售每臺進(jìn)價(jià)分別為元、元的兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 臺 | 臺 | 元 |
第二周 | 臺 | 臺 | 元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)
(1)求兩種型號的電風(fēng)扇每臺售價(jià)各是多少元?
(2)若超市準(zhǔn)備用不多于元的金額再采購這兩種型號的電風(fēng)扇共臺,求種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這臺電風(fēng)扇能否實(shí)現(xiàn)利潤超過元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com