如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B坐標(biāo)分別為(4,2)、(0,2),線段CD在于x軸上,CD=,點(diǎn)C從原點(diǎn)出發(fā)沿x軸正方向以每秒1個(gè)單位長度向右平移,點(diǎn)D隨著點(diǎn)C同時(shí)同速同方向運(yùn)動(dòng),過點(diǎn)D作x軸的垂線交線段AB于點(diǎn)E、交OA于點(diǎn)G,連結(jié)CE交OA于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)E點(diǎn)到達(dá)A點(diǎn)時(shí),停止所有運(yùn)動(dòng).
(1)求線段CE的長;
(2)記S為RtΔCDE與ΔABO的重疊部分面積,試寫出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍;
(3)連結(jié)DF,
①當(dāng)t取何值時(shí),有?
②直接寫出ΔCDF的外接圓與OA相切時(shí)t的值.
(1)線段CE的長為;
(2)S=(﹣t)2,t的取值范圍為:0≤t≤;
(3)①當(dāng)t=時(shí),DF=CD;②ΔCDF的外接圓與OA相切時(shí)t=.
【解析】
試題分析:(1)直接根據(jù)勾股定理求出CE的長即可;
(2)作FH⊥CD于H.,由AB∥OD,DE⊥OD,OB⊥OD可知四邊形ODEB是矩形,故可用t表示出AE及BE的長,由相似三角形的判定定理可得出△OCF∽△AEF,△ODG∽△AEG,由相似三角形的性質(zhì)可用t表示出CF及EG的長,F(xiàn)H∥ED可求出HD的長,由三角形的面積公式可求出S與t的關(guān)系式;
(3)①由(2)知CF=t,當(dāng)DF=CD時(shí),作DK⊥CF于K,則CK=CF=t,CK=CDcos∠DCE,由此可得出t的值;
②先根據(jù)勾股定理求出OA的長,由(2)知HD=(5﹣t),由相似三角形的判定定理得出Rt△AOB∽Rt△OFH,可用t表示出OF的長,因?yàn)楫?dāng)△CDF的外接圓與OA相切時(shí),則OF為切線,OD為割線,由切割線定理可知OF2=OC•OD,故可得出結(jié)論.
試題解析:(1)∵在Rt△CDE中,CD=,DE=2,
∴CE=;
(2)如圖1,作FH⊥CD于H.
∵AB∥OD,DE⊥OD,OB⊥OD,
∴四邊形ODEB是矩形,
∴BE=OD,
∵OC=t,
∴BE=OD=OC+CD=t+,
∴AE=AB﹣BE=4﹣(t+)=﹣t,
∵AB∥OD,
∴△OCF∽△AEF,△ODG∽△AEG,
∴,,
又∵CF+EF=5,DG+EG=4,
∴,,
∴CF=t,EG=,
∴EF=CE﹣CF=5﹣t,
∵FH∥ED,
∴,即HD=•CD=(﹣t),
∴S=EG•HD=××(﹣t)=(﹣t)2,
t的取值范圍為:0≤t≤;
(3)①由(2)知CF=t,
如圖2,當(dāng)DF=CD時(shí),如圖作DK⊥CF于K,
則CK=CF=t,
∵CK=CDcos∠DCE,
∴t=3×,
解得:t=;
∴當(dāng)t=時(shí),DF=CD;
②∵點(diǎn)A,B坐標(biāo)分別為(8,4),(0,4),
∴AB=8,OB=4,
∴OA==4,
∵由(2)知HD=(5﹣t),
∴OH=t+3﹣(5﹣t)=,
∵∠A+∠AOB=∠AOD+∠AOB=90°,
∴∠A=∠AOD,
∴Rt△AOB∽Rt△OFH,
∴,
解得OF=,
∵當(dāng)△CDF的外接圓與OA相切時(shí),則OF為切線,OD為割線,
∴OF2=OC•OD,即()2=t(t+3),得t=.
考點(diǎn):相似形綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省南京市六合區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四邊形ABCD為矩形,四邊形AEDF為菱形.
(1)求證:△ABE≌△DCE;
(2)試探究:當(dāng)矩形ABCD邊長滿足什么關(guān)系時(shí),菱形AEDF為正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省興化市九年級中考網(wǎng)上閱卷適應(yīng)性訓(xùn)練(即一模)數(shù)學(xué)試卷(解析版) 題型:選擇題
兩個(gè)大小不同的球在水平面上靠在一起,組成如圖所示的幾何體,則該幾何體的左視圖是( 。
A.兩個(gè)外離的圓 B.兩個(gè)外切的圓
C.兩個(gè)相交的圓 D.兩個(gè)內(nèi)切的圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省興化市九年級中考網(wǎng)上閱卷適應(yīng)性訓(xùn)練(二模)數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),∠A=50°,∠ADE=60°,則∠C= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省興化市九年級中考網(wǎng)上閱卷適應(yīng)性訓(xùn)練(二模)數(shù)學(xué)試卷(解析版) 題型:選擇題
興化市教育局為幫助全市貧困師生舉行“一日捐”活動(dòng),甲、乙兩校教師各捐款30000元,已知“…”,設(shè)乙學(xué)校教師有x人,則可得方程,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)( )
A.乙校教師比甲校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
B.甲校教師比乙校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
C.甲校教師比乙校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
D.乙校教師比甲校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇大豐劉莊第二初中九年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
某地區(qū)冬季干旱,康平社區(qū)每天需從外地調(diào)運(yùn)飲用水60噸.有關(guān)部門緊急部署,從甲、乙兩水廠調(diào)運(yùn)飲用水到供水點(diǎn),甲廠每天最多可調(diào)出40噸,乙廠每天最多可調(diào)出45噸.從兩水廠運(yùn)水到康平社區(qū)供水點(diǎn)的路程和運(yùn)費(fèi)如下表:
| 到康平社區(qū)供水點(diǎn)的路程(千米) | 運(yùn)費(fèi)(元/噸·千米) |
甲廠 | 20 | 4 |
乙廠 | 14 | 5 |
(1)若某天調(diào)運(yùn)水的總運(yùn)費(fèi)為4450元,則從甲、乙兩水廠各調(diào)運(yùn)了多少噸飲用水?
(2)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,總運(yùn)費(fèi)為W元,試寫出W關(guān)于x的函數(shù)關(guān)系式,并確定x的取值范圍.怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇大豐劉莊第二初中九年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,將△ABC沿直線AB向右平移后到達(dá)△BDE的位置,若∠CAB=50°,∠ABC=100°,則∠CBE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇儀征大儀中學(xué)九年級3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB邊上有一動(dòng)點(diǎn)P(不與A、B重合),連結(jié)DP,作PQ⊥DP,使得PQ交射線BC于點(diǎn)E,設(shè)AP=x.
⑴當(dāng)x為何值時(shí),△APD是等腰三角形?
⑵若設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;
⑶若BC的長可以變化,在現(xiàn)在的條件下,是否存在點(diǎn)P,使得PQ經(jīng)過點(diǎn)C?若存在,求出相應(yīng)的AP的長;若不存在,請說明理由,并直接寫出當(dāng)BC的長在什么范圍內(nèi)時(shí),可以存在這樣的點(diǎn)P,使得PQ經(jīng)過點(diǎn)C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年新人教版浙江永嘉橋下甌渠中學(xué)中考數(shù)學(xué)總復(fù)習(xí)四練習(xí)卷(解析版) 題型:填空題
如圖,已知∠1=∠2,∠B=40°,則∠3= W.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com