【題目】如圖,在平面直角坐標(biāo)系中,已知長方形ABCD的兩個(gè)頂點(diǎn)A(2,-1),C(6,2)。點(diǎn)M為y軸上一點(diǎn),△MAB的面積為6,且MD<MA。

請(qǐng)解答下列問題:

(1)頂點(diǎn)B的坐標(biāo)為

(2)將長方形ABCD平移后得到,若,則的坐標(biāo)為 ;

(3)求點(diǎn)M的坐標(biāo)。

【答案】(1)(6,-1)(2)(3,-2) (3)(0,2)

【解析】(1)根據(jù)矩形的性質(zhì),以及A、C兩點(diǎn)的坐標(biāo)即可解決問題;

(2)由平移后A1的坐標(biāo)判斷出平移的方式,然后根據(jù)平移的方式求出C1的坐標(biāo);

(3)設(shè)MAB的高為h,根據(jù)題意得:,求出h的值,進(jìn)而可求出點(diǎn)M的坐標(biāo)

(1)∵點(diǎn)A(2,-1),

∴點(diǎn)B的縱坐標(biāo)為-1.

∵C(6,2),

∴點(diǎn)B的橫坐標(biāo)為6,

∴B(6,-1);

(2)∵長方形ABCD平移后得到,

長方形ABCD向左平移了3個(gè)單位,向下平移了4個(gè)單位,

的坐標(biāo)為(3,-2)

(3)(0,2)

設(shè)△MAB的高為h,根據(jù)題意得:

所以h=3

由于MD<MA 所以M(0,2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在直線l外,點(diǎn)B在直線l上.

1)在l上求作一點(diǎn)C,在l外求作一點(diǎn)D,使得以A、B、C、D為頂點(diǎn)的四邊形是菱形;(要求:用直尺和圓規(guī)作出所有大小不同的菱形)

2)連接AB,若AB5,且點(diǎn)A到直線l的距離為4,通過計(jì)算,找出(1)中面積最小的菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DCCB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF

1)求證:ADE≌△ABF;

2BC=8DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過點(diǎn) A AM⊥BC M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1, 并寫出A1、B1、C1的坐標(biāo);

(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2, 使

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)倡導(dǎo)綠色出行、從身邊做起,小李將上班方式由自駕車改為騎共享單車,他從家到達(dá)上班地點(diǎn),自駕車要走的路程為8.4千米,騎共享單車要走的路程為6千米,已知小李自駕車的速度是騎共享單車速度的2.4倍,他由自駕車改為騎共享單車后,時(shí)間多用了10分鐘.求小李自駕車和騎共享單車的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購買一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204

求購買1個(gè)籃球和1個(gè)足球各需多少元?

若學(xué)校準(zhǔn)備購進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過1800元,則籃球最多可購買多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一節(jié)數(shù)學(xué)課上,老師布置了一個(gè)任務(wù):

已知,如圖1,在中,,用尺規(guī)作圖作矩形

同學(xué)們開動(dòng)腦筋,想出了很多辦法,其中小亮作了圖2,他向同學(xué)們分享了作法:

①分別以點(diǎn)為圓心,大于長為半徑畫弧,兩弧分別交于點(diǎn)、,連接于點(diǎn);

②作射線,在上取點(diǎn),使;

③連接,

則四邊形就是所求作的矩形.

老師說:“小亮的作法正確.”

寫出小亮的作圖依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案