如圖所示,某學校擬建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設AE=x米(0<x<4),矩形EFGH的面積為S米2

(1)求S與x的函數(shù)關系式;
(2)學校準備在矩形內(nèi)種植紅色花草,四個三角形內(nèi)種植黃色花草.已知紅色花草的價格為20元/米2,黃色花草的價格為40元/米2.當x為何值時,購買花草所需的總費用最低,并求出最低總費用(結果保留根號)?
解:(1)連接AC、BD,

∵花壇為軸對稱圖形,
∴EH∥BD,EF∥AC。
∴△BEF∽△BAC。
∵∠ABC=60°,
∴△ABC、△BEF是等邊三角形。
∴EF=BE=AB﹣AE=4﹣x,
在Rt△AEM中,∠AEM=∠ABD=30°,
則EM=AEcos∠AEM=x,∴EH=2EM=x.
∴S=(4﹣x)×x=﹣x2+4x。
(2)易求得菱形ABCD的面積為8cm2
由(1)得,矩形ABCD的面積為x2,則可得四個三角形的面積為(8+x2﹣4x),
設總費用為W,
則W=20(﹣x2+4x)+40(8+x2﹣4x)=20x2﹣80x+320
=20(x﹣2)2+240。
∵0<x<4,∴當x=2時,W取得最小,W最小=240元。
∴當x為2時,購買花草所需的總費用最低,最低費用為240元。

試題分析:(1)連接AC、BD,根據(jù)軸對稱的性質,可得EH∥BD,EF∥AC,△BEF為等邊三角形,從而求出EF,在Rt△AEM中求出EM,繼而得出EH,這樣即可得出S與x的函數(shù)關系式。
(2)根據(jù)(1)的答案,可求出四個三角形的面積,設費用為W,則可得出W關于x的二次函數(shù)關系式,利用配方法求最值即可。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(       ,       );
依此類推第n條拋物線yn的頂點坐標為(       ,       );
所有拋物線的頂點坐標滿足的函數(shù)關系是       ;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與x軸相交于點A(﹣3,0)、B(﹣1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數(shù)y=kx﹣4k(k≠0)的圖象過點P交x軸于點Q.

(1)求該二次函數(shù)的解析式;
(2)當點P的坐標為(﹣4,m)時,求證:∠OPC=∠AQC;
(3)點M,N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M,N中有一點到達Q點時,兩點同時停止運動,設運動時間為t秒.連接AN,當△AMN的面積最大時,
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點P的坐標;若不能,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(點A在點B的左邊),交y軸于點C,且經(jīng)過點(b-2,2b2-5b-1).

(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點,交y軸于另一點D,求點M的坐標;
(3)連接AM、DM,將∠AMD繞點M順時針旋轉,兩邊MA、MD與x軸、y軸分別交于點E、F,若△DMF為等腰三角形,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過△ABC的三個頂點,點A坐標為(0,3),點B坐標為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關系表達式及點C的坐標;
(2)點E為線段OC上一動點,以OE為邊在第一象限內(nèi)作正方形OEFG,當正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動.設平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數(shù)關系式及自變量t的取值范圍;并求出當t為何值時,S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標平面xOy中,拋物線C1的頂點為A(-1,4),且過點B(-3,0)

(1)寫出拋物線C1與x軸的另一個交點M的坐標;
(2)將拋物線C1向右平移2個單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.

(1)當m=3時,點B的坐標為       ,點E的坐標為         
(2)隨著m的變化,試探索:點E能否恰好落在x軸上?若能,請求出m的值;若不能,請說明理由.
(3)如圖,若點E的縱坐標為-1,拋物線(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=﹣x2平移后的位置如圖所示,點A,B坐標分別為(﹣1,0)、(3,0),設平移后的拋物線與y軸交于點C,其頂點為D.

(1)求平移后的拋物線的解析式和點D的坐標;
(2)∠ACB和∠ABD是否相等?請證明你的結論;
(3)點P在平移后的拋物線的對稱軸上,且△CDP與△ABC相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有下列4個命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x﹣2y+2=0,若點P也在的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是   

查看答案和解析>>

同步練習冊答案