【題目】(閱讀)例題:在等腰三角形中,若,求的度數(shù).
點(diǎn)點(diǎn)同學(xué)在思考時(shí)是這樣分析的:,都可能是頂角或底角,因此需要進(jìn)行分類(lèi).他認(rèn)為畫(huà)“樹(shù)狀圖”可以幫我們不重復(fù),不遺漏地分類(lèi)(如圖),據(jù)此可求出的度數(shù).
(解答)
由以上思路,可得的度數(shù)為__________;
(應(yīng)用)
將一個(gè)邊長(zhǎng)為5,12,13的直角三角形拼上一個(gè)三角形后可以拼成一個(gè)等腰三角形,圖2就是其中的一種拼法.請(qǐng)你利用備用圖畫(huà)出三種可能的情形,使得拼成的等腰三角形腰長(zhǎng)為13.
(注意:請(qǐng)對(duì)所拼成圖形中的線段長(zhǎng)度標(biāo)注數(shù)據(jù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為、點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,作直線.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)剛好在軸上,連接.
(1)寫(xiě)出一點(diǎn)的坐標(biāo),并求出直線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)點(diǎn)在線段上,連接、、,當(dāng)是等腰直角三角形時(shí),求點(diǎn)坐標(biāo);
(3)如圖②,在(2)的條件下,點(diǎn)從點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)運(yùn)動(dòng),到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),連接,過(guò)作的垂線,交軸于點(diǎn),問(wèn)點(diǎn)運(yùn)動(dòng)幾秒時(shí)是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙o的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是( )
A.7 B.17 C.7或17 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1,5),點(diǎn)B的坐標(biāo)為(﹣3,1).
(1)在平面直角坐標(biāo)系中作線段AB關(guān)于y軸對(duì)稱的線段A1B1(A與A1,B與B1對(duì)應(yīng));
(2)求△AA1B1的面積;
(3)在y軸上存在一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知BC=5,AB=1,AB⊥BC,射線CM⊥BC,動(dòng)點(diǎn)P在線段BC上(不與點(diǎn)B,C重合),過(guò)點(diǎn)P作DP⊥AP交射線CM于點(diǎn)D,連接AD.
(1)如圖1,若BP=4,判斷△ADP的形狀,并加以證明.
(2)如圖2,若BP=1,作點(diǎn)C關(guān)于直線DP的對(duì)稱點(diǎn)C′,連接AC′.
①依題意補(bǔ)全圖2;
②請(qǐng)直接寫(xiě)出線段AC′的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:如圖(1)和圖(2)中,點(diǎn)P是平面內(nèi)一點(diǎn),如果=2或=,稱點(diǎn)P是線段AB的強(qiáng)弱點(diǎn).
(1)如圖2,在Rt△APB中,∠APB=90°,∠A=30°,問(wèn):點(diǎn)B是否是線段AP的強(qiáng)弱點(diǎn)?請(qǐng)說(shuō)明理由;
(2)如圖3,在Rt△ABC中,∠ACB=90°,B是線段AC的強(qiáng)弱點(diǎn)(BA>BC),BD是Rt△ABC的角平分線,求證:點(diǎn)D是線段AC上的強(qiáng)弱點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com