【題目】(1)如圖1,△ABC為等邊三角形,點D、E分別為邊AB、AC上的一點,將圖形沿線段DE所在的直線翻折,使點A落在BC邊上的點F處求證:;
(2)如圖2,按圖1的翻折方式,若等邊△ABC的邊長為4,當時,求的值;
(3)如圖3,在中,,點D是AB邊上的中點,在BC的下方作射線BE,使得,點P是射線BE上一個動點,當,求BP的長.
【答案】(1)見解析;(2);(3)2或6
【解析】
(1)根據三角形外角的性質證明∠BDF=∠EFC,從而可得△BDF∽△CFE,根據相似三角形對應邊成比例即可得出結論;
(2)過D作DH⊥BC.設BF=x,則CF=4-x.設EF=2a,則DF=3a,AE=2a,BD=4-AD=4-3a,CE=4-AE=4-2a,由相似三角形對應邊成比例,即可得出x、a的值,從而求得BD、DF、DH的長,根據正弦的定義即可得出結論;
(3)解Rt△ABC得到BC、AB、BD的長.過C作CF⊥BC,交BE于F,解Rt△BCF,得到CF、BF的長.通過證明△DBPΔPFC,由相似三角形對應邊成比例即可得出結論.
(1),
又,
,
.
又,
,
,
即.
(2)過D作.
設,則.
設,則,AE=2a,
,
.
由(1)知,
,
即,
,
,
,
.
,
,
.
(3)∵,
∴,
,
∴.
過C作,交BE于F.
∵∠CBF=30°,
∴CF=BC=,
∴CF=4,∴BF=2CF=8.
∵,
.
∴,
又,
∴,
∴,即,
∴或6.
科目:初中數學 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題: 問題:“在平面內,已知分別有個點,個點,個點,5 個點,…,n 個點,其中任意三 個點都不在同一條直線上.經過每兩點畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個問題,希望小組的同學們設計了如下表格進行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數為 ;
(2)若某同學按照本題中的方法,共畫了條直線,求該平面內有多少個已知點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學習了統(tǒng)計知識后,小明的數學老師要求每個學生就本班同學的上學方式進行一次調查統(tǒng)計,如圖是小明通過收集數據后繪制的兩幅不完整的統(tǒng)計圖. 請根據圖中提供的信息,解答下列問題:
(1)該班共有_______________名學生;
(2)將“騎自行車”部分的條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中;求出“乘車”部分所對應的圓心角的度數;
(4)若全年級有600名學生,試估計該年級騎自行車上學的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程有兩個實數根x1,x2.
(1)求實數k的取值范圍;
(2)是否存在實數k使得成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經過市場調查,整理出某種商品在第()天的售價與銷量的相關信息如下表.已知該商品的進價為每件30元,設銷售該商品每天的利潤為元.
(1)求與的函數關系是;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x2+bx+c經過點A(﹣5,0)和點B(1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)點P是拋物線上A、D之間的一點,過點P作PE⊥x軸于點E,PG⊥y軸,交拋物線于點G,過點G作GF⊥x軸于點F,當矩形PEFG的周長最大時,求點P的橫坐標;
(3)如圖2,連接AD、BD,點M在線段AB上(不與A、B重合),作∠DMN=∠DBA,MN交線段AD于點N,是否存在這樣點M,使得△DMN為等腰三角形?若存在,求出AN的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com