【題目】根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是( )
A.2013年至2017年北京市國民生產(chǎn)總值逐年增加
B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元
C.2017年比2016年的國民生產(chǎn)總值增加了10%
D.若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達(dá)到33 880億元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(2,2),B(﹣1,a)
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)設(shè)點(diǎn)P(h,y1),Q(h,y2)分別是兩函數(shù)圖象上的點(diǎn);
①試直接寫出當(dāng)y1>y2時h的取值范圍;
②若y1﹣y2=2,試求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個四邊形的一組對角互余,那么我們稱這個四邊形為“對角互余四邊形”.
(1)如圖①,在對角互余四邊形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,則四邊形ABCD的面積為 ;
(2)如圖②,在對角互余四邊形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四邊形ABCD的面積;
(3)如圖③,在△ABC中,BC=2AB,∠ABC=60°,以AC為邊在△ABC異側(cè)作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在半圓中,直徑的長為6,點(diǎn)是半圓上一點(diǎn),過圓心作的垂線交線段的延長線于點(diǎn),交弦于點(diǎn).
(1)求證:;
(2)記,,求關(guān)于的函數(shù)表達(dá)式;
(3)若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某貨船以24海里/時的速度將一批重要物資從A處運(yùn)往正東方向的M處,在點(diǎn)A處測得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達(dá)B處,此時再測得該島在北偏東30°的方向上,
(1)求B到C的距離;
(2)如果在C島周圍9海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險?試說明理由(≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)為的中點(diǎn),以點(diǎn)為圓心作圓心角為的扇形,點(diǎn)恰在弧上,則圖中陰影部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形:
(1)可知tanα=,tanβ=,用“畫圖法”求tan(α+β)的值,具體解法如下:
第一步:如圖1所示,構(gòu)造符合題意兩個“背靠背”的直角三角形;
第二步:如圖2所示,將圖1中所有數(shù)據(jù)同比例擴(kuò)大3倍;
第三步:如圖3所示,依托中間的Rt△ABD的各頂點(diǎn)構(gòu)造“水平﹣﹣豎直輔助線”,構(gòu)造出“一線三直角”基本相似型,并補(bǔ)成矩形ACEF;由圖可知tan(α+β)= .
(2)依據(jù)(1)的方法,已知tanα=,tanβ=,用“畫圖法”求tan(α+β)的值.
(3)擴(kuò)展延伸,已知tanα=,tanβ=,直接寫出tan(α﹣β)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com