如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.求證:
(1)AM⊥DM;
(2)M為BC的中點(diǎn).
【考點(diǎn)】角平分線的性質(zhì).
【專題】證明題.
【分析】(1)根據(jù)平行線的性質(zhì)得到∠BAD+∠ADC=180°,根據(jù)角平分線的定義得到∠MAD+∠ADM=90°,根據(jù)垂直的定義得到答案;
(2)作NM⊥AD,根據(jù)角平分線的性質(zhì)得到BM=MN,MN=CM,等量代換得到答案.
【解答】解:(1)∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM;
(2)作NM⊥AD交AD于N,
∵∠B=90°,AB∥CD,
∴BM⊥AB,CM⊥CD,
∵AM平分∠BAD,DM平分∠ADC,
∴BM=MN,MN=CM,
∴BM=CM,
即M為BC的中點(diǎn).
【點(diǎn)評(píng)】本題考查的是角平分線的性質(zhì),掌握平行線的性質(zhì)和角的平分線上的點(diǎn)到角的兩邊的距離相等是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,一次函數(shù)y=(m﹣5)x+6﹣2m的圖象分別與x軸、y軸的相交于A、B兩點(diǎn),則m的取值范圍是
( )
A.m<5 B.m<3 C.3<m<5 D.m>3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知D為△ABC邊BC延長(zhǎng)線上一點(diǎn),DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)下列已知條件,能唯一畫出△ABC的是( )
A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為:__________(只添加一個(gè)條件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,△ABC是等腰直角三角形,BC=AB,A點(diǎn)在x負(fù)半軸上,直角頂點(diǎn)B在y軸上,點(diǎn)C在x軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn)B的坐標(biāo)是(0,﹣1),求點(diǎn)C的坐標(biāo);
(2)如圖2,過(guò)點(diǎn)C作CD⊥y軸于D,請(qǐng)直接寫出線段OA、OD、CD之間等量關(guān)系;
(3)如圖3,若x軸恰好平分∠BAC,BC與x軸交于點(diǎn)E,過(guò)點(diǎn)C作CF⊥x軸于F,問(wèn)CF與AE有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時(shí)40海里的速度向正北方向航行,2小時(shí)后到達(dá)位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為( )
A.40海里 B.60海里 C.70海里 D.80海里
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com