【題目】如圖,BC為⊙O的直徑,以BC為直角邊作RtABC,∠ACB=90°,斜邊AB與⊙O交于點D,過點D作⊙O的切線DEAC于點E,DGBC于點F,交⊙O于點G

1)求證:AE=CE;

2)若AD=4AE=,求DG的長.

【答案】(1)證明見解析 ;(2)

【解析】

1)首先連接CD,由BC為⊙O的直徑,∠ACB=90°,可得AC是⊙O的切線.又由⊙O的切線DEAC于點E,根據(jù)切線長定理,可得ED=EC,然后由等角的余角相等,證得∠A=2,即可得:AE=CE;

2)首先由直角三角形斜邊上的中線等于斜邊的一半,求得AC長,然后由勾股定理,求得CD的長,再利用三角函數(shù),求得DG的長.

解:(1)如圖,連接CD

BC為⊙O的直徑,∠ACB=90°,

AC是⊙O的切線,

又∵DE與⊙O相切,

ED=EC,

∴∠1=3

BC為⊙O的直徑,

∴∠BDC=90°,

∵∠1+2=3+A=90°

∴∠A=2,

ED=EA

AE=CE;

2)∵AE=,

AC=2AE= RtACD中,

,

∵∠3+4=3+A=90°

∴∠A=4,

,

DGBC于點F,

DG=2DF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,過點C的切線交AB的延長線于點D,∠ACD120°.

1)求證:ACCD;

2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2﹣4x+5x軸于點A、B兩點(點A在點B的左側),交y軸于點C,點D為拋物線的頂點,連接AD.

(1)求直線AD的解析式.

(2)點E(m,0)、F(m+1,0)為x軸上兩點,其中(﹣5<m<﹣3.5)EE′、FF′分別平行于y軸,交拋物線于點E′F′,交AD于點M、N,當ME′+NF′的值最大時,在y軸上找一點R,使得|RE′﹣RF′|值最大,請求出點R的坐標及|RE′﹣RF′|的最大值.

(3)如圖2,在拋物線上是否存在點P,使得PAC是以AC為底邊的等腰三角形,若存在,請出點P的坐標及PAC的面積,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC,A點的坐標為(50),對角線OBAC相交于D點,雙曲線yx0)經(jīng)過D點,交BC的延長線于E點,交ABF點,連接OFACM,且OBAC40.有下列四個結論:①k8;②CE1;③AC+OB6;④SAFMSAOM13.其中正確的結論是( 。

A. ①②B. ①③C. ①②③D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.

1)求拋物線的表達式;

2)寫出點的坐標并求直線的表達式;

3)設動點,分別在拋物線和對稱軸l上,當以,,為頂點的四邊形是平行四邊形時,求,兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的直徑AB垂直于弦CD于點E,連接CO并延長交AD于點F,且CFAD

(1) 求證:EOB的中點

(2) AB8,求CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)(探究)如圖,在等邊△ABC,AB=4cm,M為邊BC的中點,N為邊AB上的任意一點(不與點A,B重合).若點B關于直線MN的對稱點B′恰好落在等邊△ABC的邊上,求BN的長.

(2)(拓展)如圖,在△ABC,ABC=45°,ADBC邊上的中線,過點DDEAB于點E,sinDAB= ,DB=3.AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶小面是一款發(fā)源于山城重慶的地方特色傳統(tǒng)小吃,是重慶最受歡迎的美食之一.重慶小面佐料豐富且用料考究,不同店面還根據(jù)自身菜譜加入豌豆、牛肉、肥腸、雜醬等,口感獨特,麻辣鮮香,近年來聞名全國,某天,小明家花了48元購買牛肉面作為早飯,小華家花了28元購買豌豆面作為早飯,且小明家購買牛肉面的碗數(shù)與小華家購買豌豆面的碗數(shù)相同.已知面館一碗豌豆面的價格比一碗牛肉面的價格少5元.

1)求購買一碗豌豆面和一碗牛肉面各需要多少元?

2)面館一碗豌豆面的成本為4元,一碗牛肉面的成本為7元,某天面館賣出豌豆面和牛肉面共400碗,且賣出的豌豆面和牛肉面的總利潤不低于1800元,則面館當天至少賣出牛肉面多少碗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.

(1)求反比例函數(shù)和一次函數(shù)的表達式.

(2)若在軸上有一點,其橫坐標是1,連接、,的面積.

查看答案和解析>>

同步練習冊答案