如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時(shí),EP+BP=__________.

 

 

12

【解析】延長BQ交射線EF于M,根據(jù)三角形的中位線平行于第三邊可得EF∥BC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠M=∠CBM,再根據(jù)角平分線的定義可得∠PBM=∠CBM,從而得到∠M=∠PBM,根據(jù)等角對(duì)等邊可得BP=PM,求出EP+BP=EM,再根據(jù)CQ=CE求出EQ=2CQ,然后根據(jù)△MEQ和△BCQ相似,利用相似三角形對(duì)應(yīng)邊成比例列式求解即可.

【解析】
如圖,延長BQ交射線EF于M,

∵E、F分別是AB、AC的中點(diǎn),

∴EF∥BC,

∴∠M=∠CBM,

∵BQ是∠CBP的平分線,

∴∠PBM=∠CBM,

∴∠M=∠PBM,

∴BP=PM,

∴EP+BP=EP+PM=EM,

∵CQ=CE,

∴EQ=2CQ,

由EF∥BC得,△MEQ∽△BCQ,

==2,

∴EM=2BC=2×6=12,

即EP+BP=12.

故答案為:12.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)整式(解析版) 題型:解答題

古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 ,這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16,這樣的數(shù)稱為“正方形數(shù)”.

(1)第5個(gè)三角形數(shù)是  ,第n個(gè)“三角形數(shù)”是  ,第5個(gè)“正方形數(shù)”是  ,第n個(gè)正方形數(shù)是    ;

(2)經(jīng)探究我們發(fā)現(xiàn):任何一個(gè)大于1的正方形數(shù)都可以看作兩個(gè)相鄰“三角形數(shù)”之和.

例如:4=1+3,9=3+6,16=6+10        ,     

請(qǐng)寫出上面第4個(gè)和第5個(gè)等式;

(3)在(2)中,請(qǐng)?zhí)骄康趎個(gè)等式,并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:填空題

如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點(diǎn),M、N為上兩點(diǎn),且∠MEB=∠NFB=60°,則EM+FN=  

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:選擇題

已知O1的半徑是3cm,O2的半徑是2cm,O1O2=cm,則兩圓的位置關(guān)系是( 。

A.相離

B.外切

C.相交

D.內(nèi)切

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圖形的規(guī)律(解析版) 題型:選擇題

將圖1的正方形作如下操作:第1次:分別連接各邊中點(diǎn)如圖2,得到5個(gè)正方形;第2次:將圖2左上角正方形按上述方法再分割如圖3,得到9個(gè)正方形…,以此類推,根據(jù)以上操作,若要得到2013個(gè)正方形,則需要操作的次數(shù)是(  )

A.502 B.503 C.504 D.505

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圖形的相似(解析版) 題型:選擇題

直線l1l2l3,且l1與l2的距離為1,l2與l3的距離為3,把一塊含有45°角的直角三角形如圖放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長度為( 。

A    B    C    D

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圖形的對(duì)稱、平移與旋轉(zhuǎn)(解析版) 題型:解答題

如圖1,把邊長分別是為4和2的兩個(gè)正方形紙片OABC和OD′E′F′疊放在一起.

(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論;

(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個(gè)單位的速度平移,平移后的正方形ODEF設(shè)為正方形PQMN,如圖3,設(shè)正方形PQMN移動(dòng)的時(shí)間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;

(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到正方形OHKL,如圖4,求△ACK的面積.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)四邊形綜合練習(xí)(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動(dòng),沿B﹣A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長度,沿A﹣D﹣A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長度.點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.

(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動(dòng)時(shí),求AP的長(用含t的代數(shù)式表示).

(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.

(3)過點(diǎn)Q作QRAB,交AD于點(diǎn)R,連結(jié)BR,如圖.在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.

(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對(duì)稱點(diǎn)分別為C′、D′,直接寫出C′D′BC時(shí)t的值.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)二次函數(shù)(解析版) 題型:選擇題

如圖,RtAOB中,ABOB,且AB=OB=3,設(shè)直線x=t截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。

A  B  C D

 

 

查看答案和解析>>

同步練習(xí)冊答案