【題目】如圖,將邊長為的正方形的邊長增加,得到一個(gè)邊長為的正方形.在圖1的基礎(chǔ)上,某同學(xué)設(shè)計(jì)了一個(gè)解釋驗(yàn)證的方案(詳見方案1)
方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.
方式1:
方式2:
因此,
(1)請模仿方案1,在圖1的基礎(chǔ)上再設(shè)計(jì)一種方案,用以解釋驗(yàn)證;
(2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請?jiān)诖嘶A(chǔ)上再設(shè)計(jì)一個(gè)方案用以解釋驗(yàn)證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若,且,則我們稱是的差余角.例如:若,則的差余角.
(1)如圖1,點(diǎn)在直線上,射線是的角平分線,若是的差余角,求的度數(shù).
(2)如圖2,點(diǎn)在直線上,若是的差余角,那么與有什么數(shù)量關(guān)系.
(3)如圖3,點(diǎn)在直線上,若是的差余角,且與在直線的同側(cè),請你探究是否為定值?若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
垂直于同一直線的兩條直線互相平行;的平方根是;若一個(gè)角的兩邊與另一個(gè)角的兩邊互相垂直,且其中一個(gè)角是45°,則另一個(gè)角為45°或135°;④若是的整數(shù)部分,是不等式的最大整數(shù)解,則關(guān)于,方程的自然數(shù)解共有3對;⑤在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(2,0),(0,1),將線段AB平移至,的位置,則.其中真命題的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用20天,學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi)。
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:a、由甲單獨(dú)修理;b、由乙單獨(dú)修理;c、甲、乙合作同時(shí)修理。你認(rèn)為哪種方案省時(shí)又省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=-x2 +bx+c交y軸于點(diǎn)C(0,2),經(jīng)過點(diǎn)Q(2,2).直線y=x+4分別交x軸、y軸于點(diǎn)B、A.
(1)直接填寫拋物線的解析式________;
(2)如圖1,點(diǎn)P為拋物線上一動(dòng)點(diǎn)(不與點(diǎn)C重合),PO交拋物線于M,PC交AB于N,連MN.
求證:MN∥y軸;
(3)如圖,2,過點(diǎn)A的直線交拋物線于D、E,QD、QE分別交y軸于G、H.求證:CG CH為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD是菱形,點(diǎn)M、N分別在AB、AD上,且BM=DN,MG∥AD,NF∥AB,點(diǎn)F、G分別在BC、CD上,MG與NF相交于點(diǎn)E;
(1)如圖,求證:四邊形AMEN是菱形;
(2)如圖,連接AC,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EE⊥AB,垂足為F,連接DF;
求證:(1)AC=EF;
(2)四邊形ADFE是平行四邊形;
(3)AC⊥DF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的面積為,、分別是,上的點(diǎn),且,.連接,交于點(diǎn),連接并延長交于點(diǎn).則四邊形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:順次連接矩形A1B1C1D1四邊的中點(diǎn)得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn)得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形AnBnCnDn的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com