【題目】如圖,已知四邊形ABCD中,AC平分∠DAB,∠DAB=60°,∠B與∠D互補(bǔ),AC=4,CD=3,則AB﹣AD=_____.
【答案】2.
【解析】
利用“截長(zhǎng)補(bǔ)短”中的補(bǔ)短,補(bǔ)出鄰補(bǔ)角即可出現(xiàn)相等角度,求出△DEC≌△BFC和△EAC≌△FAC,推出DE=BF,AE=AF,求出AB﹣AD=2DE,求出DE即可.
解:過C作CE⊥AD交AD的延長(zhǎng)線于E,CF⊥BA于F,則∠E=∠CFB=90°,
∵AC平分∠DAB,
∴CE=CF,
∵∠B與∠ADC互補(bǔ),
∴∠B+∠ADC=180°,
∵∠ADC+∠EDC=180°,
∴∠B=∠EDC,
在△DEC和△BFC中
∴△DEC≌△BFC,
∴DE=BF,
∵AC平分∠DAB,
∴∠EAC=∠FAC=
在△EAC和△FAC中
∴△EAC≌△FAC,
∴AE=AF,
∴AB﹣AD=(AF+BF)﹣(AE﹣DE)=(AE+DE)﹣(AE﹣DE)=2DE,
∵在Rt△AEC中,∠E=90°,∠EAC=30°,AC=4,
∴CE=AC=2,
在Rt△DEC中,∠E=90°,DC=3,CE=2,
由勾股定理得:DE===,
∴AB﹣AD=2DE=2,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=圖象上兩點(diǎn),AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為( 。
A.8B.10C.12D.16.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,AC與BD相交于點(diǎn)O,點(diǎn)E在線段OB上,AE的延長(zhǎng)線與BC相交于點(diǎn)F,OD2 = OB·OE.
(1)求證:四邊形AFCD是平行四邊形;
(2)如果BC=BD,AE·AF=AD·BF,求證:△ABE∽△ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】1896年,挪威生理學(xué)家古德貝發(fā)現(xiàn),每個(gè)人有一條腿邁出的步子比另一條腿邁出的步子長(zhǎng)的特點(diǎn),這就導(dǎo)致每個(gè)人在蒙上眼睛行走時(shí),雖然主觀上沿某一方向直線前進(jìn),但實(shí)際上走出的是一個(gè)大圓圈!這就是有趣的“瞎轉(zhuǎn)圈”現(xiàn)象.經(jīng)研究,某人蒙上眼睛走出的大圓圈的半徑米是其兩腿邁出的步長(zhǎng)之差厘米的反比例函數(shù),其圖象如圖所示.
請(qǐng)根據(jù)圖象中的信息解決下列問題:
(1)求與之間的函數(shù)表達(dá)式;
(2)當(dāng)某人兩腿邁出的步長(zhǎng)之差為厘米時(shí),他蒙上眼睛走出的大圓圈的半徑為______米;
(3)若某人蒙上眼睛走出的大圓圈的半徑不小于米,則其兩腿邁出的步長(zhǎng)之差最多是多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了答謝顧客發(fā)起活動(dòng):凡在本超市一次性購物滿100元的顧客,當(dāng)天均可憑購物小票參與一次抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲品:紅酒、啤酒和酸奶,抽獎(jiǎng)規(guī)則如下:
①如圖,是一個(gè)材質(zhì)均勻可自出轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個(gè)扇形區(qū)域,各區(qū)域上分別寫有“紅”、“啤”、“酒”、“酸”、“奶”字樣;
②參與一次獎(jiǎng)活動(dòng)的顧客可以進(jìn)行兩次“隨機(jī)轉(zhuǎn)動(dòng)”,但若轉(zhuǎn)盤停止時(shí)指針指向兩邊區(qū)域的邊界則可以重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針停到有字的區(qū)域才算完成了這次隨機(jī)轉(zhuǎn)動(dòng);
③顧客參與一次抽獎(jiǎng)活動(dòng),記錄兩次指針?biāo)竻^(qū)域?qū)?yīng)的字,若這兩個(gè)字和某種獎(jiǎng)品名稱對(duì)應(yīng)的兩個(gè)字相同(與字的順序無關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;若兩字不能組成一種獎(jiǎng)品名時(shí),不能獲得任何獎(jiǎng)品,根據(jù)以上規(guī)則,回答下列問題:
(1)求只做一次“隨機(jī)轉(zhuǎn)動(dòng)”指針指向“酒“字的概率;
(2)請(qǐng)用列表或畫樹狀圖的方法求顧客參與一次抽獎(jiǎng)活動(dòng)獲得一瓶紅酒的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B,拋物線y=﹣2x2+bx+c過A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交拋物線于點(diǎn)D,拋物線的頂點(diǎn)為M,其對(duì)稱軸交AB于點(diǎn)N.
(1)求拋物線的表達(dá)式及點(diǎn)M、N的坐標(biāo);
(2)是否存在點(diǎn)P,使四邊形MNPD為平行四邊形?若存在求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中,已知,點(diǎn)為邊上一點(diǎn),滿足,動(dòng)點(diǎn)以的速度沿線段從點(diǎn)移動(dòng)到點(diǎn),連接,作,交線段于點(diǎn),設(shè)點(diǎn)移動(dòng)的時(shí)間為,的長(zhǎng)度為,與的函數(shù)關(guān)系如圖②所示.
(1)圖①中,_______,圖②中,_______;
(2)點(diǎn)能否為線段的中點(diǎn)?若可能,求出此時(shí)的值,若不可能,請(qǐng)說明理由;
(3)在圖①中,連接、,設(shè)與交于點(diǎn),若平分的面積,求此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點(diǎn)坐標(biāo)為(2,﹣4),且與x軸交于原點(diǎn)和點(diǎn)C,對(duì)稱軸與x軸交點(diǎn)為M.
(1)求拋物線的解析式;
(2)A點(diǎn)在拋物線上,且A點(diǎn)的橫坐標(biāo)為﹣2,在拋物線對(duì)稱軸上找一點(diǎn)B,使得AB與CB的差最大,求B點(diǎn)的坐標(biāo);
(3)P點(diǎn)在拋物線的對(duì)稱軸上,且P點(diǎn)的縱坐標(biāo)為8.探究:在拋物線上是否存在點(diǎn)Q使得O、M、P、Q四點(diǎn)共圓,若存在求出Q點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>