【題目】(1)如圖1,E是正方形ABCD邊AB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉90°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①線段DB和DG的數(shù)量關系是 ;
②寫出線段BE,BF和DB之間的數(shù)量關系.
(2)當四邊形ABCD為菱形,∠ADC=60°,點E是菱形ABCD邊AB所在直線上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉120°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①如圖2,點E在線段AB上時,請?zhí)骄烤段BE、BF和BD之間的數(shù)量關系,寫出結論并給出證明;
②如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE=1,AB=2,直接寫出線段GM的長度.
【答案】(1)①DB=DG;②BF+BE=BD;(2)①BF+BE=BD,理由見解析;②GM=.
【解析】
(1)①根據(jù)旋轉的性質解答即可;
②根據(jù)正方形的性質和全等三角形的判定和性質解答即可;
(2)①根據(jù)菱形的性質和全等三角形的判定和性質解答即可;
②作輔助線,計算BD和BF的長,根據(jù)平行線分線段成比例定理可得BM的長,根據(jù)線段的差可得結論.
解:(1)①DB=DG,
理由是:
∵∠DBE繞點B逆時針旋轉90°,如圖1,
由旋轉可知,∠BDE=∠FDG,∠BDG=90°,
∵四邊形ABCD是正方形,
∴∠CBD=45°,
∴∠G=45°,
∴∠G=∠CBD=45°,
∴DB=DG;
故答案為:DB=DG;
②BF+BE=BD,理由如下:
由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,
∴△FDG≌△EDB(ASA),
∴BE=FG,
∴BF+FG=BF+BE=BC+CG,
Rt△DCG中,∵∠G=∠CDG=45°,
∴CD=CG=CB,
∵DG=BD=BC,
即BF+BE=2BC=BD;
(2)①如圖2,BF+BE=BD,
理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,
由旋轉120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,
在△DBG中,∠G=180°﹣120°﹣30°=30°,
∴∠DBG=∠G=30°,
∴DB=DG,
∴△EDB≌△FDG(ASA),
∴BE=FG,
∴BF+BE=BF+FG=BG,
過點D作DM⊥BG于點M,如圖2,
∵BD=DG,
∴BG=2BM,
在Rt△BMD中,∠DBM=30°,
∴BD=2DM.
設DM=a,則BD=2a,
BM=a,
∴BG=2a,
∴=,
∴BG=BD,
∴BF+BE=BG=BD;
②過點A作AN⊥BD于N,過D作DP⊥BG于P,如圖3,
Rt△ABN中,∠ABN=30°,AB=2,
∴AN=1,BN=,
∴BD=2BN=2,
∵DC∥BE,
∴=,
∵CM+BM=2,
∴BM=,
Rt△BDP中,∠DBP=30°,BD=2,
∴BP=3,
由旋轉得:BD=BF,
∴BF=2BP=6,
∴GM=BG﹣BM=6+1﹣=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。
(1)求點B的坐標;
(2)已知,C為拋物線與y軸的交點。
①若點P在拋物線上,且,求點P的坐標;
②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
(Ⅰ)求發(fā)射臺與雷達站之間的距離;
(Ⅱ)求這枚火箭從到的平均速度是多少(結果精確到0.01)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,面積為1的等腰直角△OA1A2,∠OA2A1=90°,且OA2為斜邊在△OA1A2外作等腰直角△OA2A3,以OA3為斜邊在△OA2A3外作等腰直角△OA3A4,以OA4為斜邊在△OA3A4外作等腰直角△OA4A5,…連接A1A3,A3A5,A5A7,…分別與OA2,OA4,OA6,…交于點B1,B2,B3,…按此規(guī)律繼續(xù)下去,記△OB1A3的面積為S1,△OB2A5的面積為S2,△OB3A7的面積為S3,…△OBnA2n+1的面積為Sn,則Sn=__(用含正整數(shù)n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點F是BC邊上一點,連結AF,以AF為對角線作正方形AEFG,邊FG與正方形ABCD的對角線AC相交于點H,連結DG.
(1)填空:若∠BAF=18°,則∠DAG=______°.
(2)證明:△AFC∽△AGD;
(3)若=,請求出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=4,⊙O的直徑為10,求BD的長度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com