【題目】現(xiàn)有一個(gè)種植總面積為的矩形塑料溫棚,分壟間隔套種草莓和西紅柿共壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于8壟,又不超過(guò)壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤(rùn)分別如下:
⑴若設(shè)草莓共種植了壟,通過(guò)計(jì)算說(shuō)明共有幾種種植方案?分別是哪幾種?
⑵在這幾種種植方案中,哪種方案獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
占地面積(m2/壟) | 產(chǎn)量(千克/壟) | 利潤(rùn)(元/千克) | |
西紅柿 | 32 | 160 | 1.0 |
草莓 | 15 | 50 | 1.6 |
【答案】(1)共有三種種植方案,具體方案見(jiàn)解析;(2)當(dāng)草莓種植14壟,西紅柿種植10壟,獲得的利潤(rùn)最大,最大利潤(rùn)是2720元.
【解析】
(1)由于種植草莓或西紅柿壟數(shù)是不確定的,所以應(yīng)利用不等式來(lái)解答.由于塑料溫棚的種植面積為530m2,所以可以列出不等式15x+32(24-x)≤530,由此可以先求得x的取值范圍,然后再確定整數(shù)x的值,從而確定種植的方案;
(2)根據(jù)(2)中的方案分別求出每種方案獲得的利潤(rùn)進(jìn)行比較即可得.
(1)草莓共種植了壟,根據(jù)題意西紅柿種了()壟,則有
15x+32(24-x)≤530,
解得x≥14,
∵x≤16,且x是正整數(shù),
∴x=14,15,16
共有三種種植方案,分別是:
方案一:草莓種植14壟,西紅柿種植10壟;
方案二:草莓種植15壟,西紅柿種植9壟;
方案三:草莓種植16壟,西紅柿種植8壟;
(2)方案一獲得的利潤(rùn):14×50×1.6+10×160×1.0=2720(元),
方案二獲得的利潤(rùn):15×50×1.6+9×160×1.0=2640(元),
方案三獲得的利潤(rùn):16×50×1.6+8×160×1.0=2560(元),
所以當(dāng)草莓種植14壟,西紅柿種植10壟,獲得的利潤(rùn)最大,最大利潤(rùn)是2720元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對(duì)角線(xiàn)BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:中,,求證:,下面寫(xiě)出可運(yùn)用反證法證明這個(gè)命題的四個(gè)步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個(gè)步驟正確的順序應(yīng)是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣+bx+c過(guò)點(diǎn)A(3,0),B(0,2).M(m,0)為線(xiàn)段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過(guò)點(diǎn)M作垂直于x軸的直線(xiàn)與直線(xiàn)AB和拋物線(xiàn)分別交于點(diǎn)P、N.
(1)求直線(xiàn)AB的解析式和拋物線(xiàn)的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)在對(duì)稱(chēng)軸的左側(cè)是否存在點(diǎn)M使四邊形OMPB的面積最大,如果存在求點(diǎn)M的坐標(biāo);不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第二次將點(diǎn)A1向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3,按照這種規(guī)律下去,第n次移動(dòng)到點(diǎn)An,如果點(diǎn)An,與原點(diǎn)的距離不少于20,那么n的最小值是( )
A. 11B. 12C. 13D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ACB和△ECD均為等腰直角三角形,∠ACB=∠ECD=90°.
(1)如圖1,點(diǎn)E在BC上,則線(xiàn)段AE和BD有怎樣的關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論(不需證明);
(2)若將△DCE繞點(diǎn)C旋轉(zhuǎn)一定的角度得圖2,則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)當(dāng)△DCE旋轉(zhuǎn)到使∠ADC=90°時(shí),若AC=5,CD=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的頂點(diǎn)為C,對(duì)稱(chēng)軸為直線(xiàn),且經(jīng)過(guò)點(diǎn)A(3,-1),與y軸交于點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)經(jīng)過(guò)點(diǎn)A的直線(xiàn)交拋物線(xiàn)于點(diǎn)P,交x軸于點(diǎn)Q,若,試求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+b與雙曲線(xiàn)y=(k是常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).點(diǎn)P在x軸.
(1)求直線(xiàn)和雙曲線(xiàn)的解析式;
(2)若△BCP的面積等于2,求P點(diǎn)的坐標(biāo);
(3)求PA+PC的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說(shuō):“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過(guò)計(jì)算說(shuō)明原題中“”是幾?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com