【題目】如圖,在ABC中,AB=AC,ADBC邊的中線(xiàn),過(guò)點(diǎn)ABC的平行線(xiàn),過(guò)點(diǎn)BAD的平行線(xiàn),兩線(xiàn)交于點(diǎn)E.

(1)求證:四邊形ADBE是矩形;

(2)連結(jié)DE,交AB與點(diǎn)O,若BC=8,AO=,求ABC的面積.

【答案】(1)見(jiàn)解析;(2)12

【解析】

1)只要證明四邊形ADBE是平行四邊形,且∠ADB=90°即可

2)求出AB、AD利用三角形面積解答即可

1AEBC,BEAD,∴四邊形ADBE是平行四邊形

AB=ACADBC邊的中線(xiàn),ADBC

即∠ADB=90°,∴四邊形ADBE為矩形

2∵在矩形ADCE,AO=2.5,DE=AB=5

DBC的中點(diǎn)AE=DB=4,AB=2AO=5

∵∠ADB=90°,AD=,∴△ABC的面積=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線(xiàn)分別交ABAC于點(diǎn)D,E

1)若A=40°,求EBC的度數(shù);

2)若AD=5EBC的周長(zhǎng)為16,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等腰直角ABC中,∠BAC90°,點(diǎn)D從點(diǎn)B出發(fā)沿射線(xiàn)BC方向移動(dòng).在AD右側(cè)以AD為腰作等腰直角ADE,∠DAE90°.連接CE

1)求證:ACE≌△ABD;

2)點(diǎn)D在移動(dòng)過(guò)程中,請(qǐng)猜想CE,CD,DE之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)若AC,當(dāng)CD1時(shí),結(jié)合圖形,請(qǐng)直接寫(xiě)出DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE分別是△ABC的邊AB,BC上的點(diǎn),AB3BD,BECE.設(shè)△ADF的面積為S1,△CEF的面積為S2,若,則S1-S2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為∠AOB的平分線(xiàn)上一點(diǎn),PCOA于點(diǎn)C,DOA上一點(diǎn),EOB上一點(diǎn),∠ODP180°-∠OEP.

(1)求證:PDPE.

(2)OC6,求ODOE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2﹣2ax+3的圖象與x軸分別交于點(diǎn)A,B,與y軸交于點(diǎn)C,已知BO=CO.

(1)求拋物線(xiàn)的解析式;

(2)點(diǎn)E在線(xiàn)段OB上,過(guò)點(diǎn)Ex軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)P,連結(jié)PA,若PACE,垂足為點(diǎn)F,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑為AB,點(diǎn)C在圓周上(異于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分線(xiàn),求證:直線(xiàn)CD是O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,ADBC邊上的高線(xiàn),CEAB邊上的中線(xiàn),DGCEG,且CD=AE.

1)求證:CG=EG.

2)求證:∠B=2ECB.

查看答案和解析>>

同步練習(xí)冊(cè)答案