【題目】如圖,在△ABC中,AB=AC,AD是BC邊的中線(xiàn),過(guò)點(diǎn)A作BC的平行線(xiàn),過(guò)點(diǎn)B作AD的平行線(xiàn),兩線(xiàn)交于點(diǎn)E.
(1)求證:四邊形ADBE是矩形;
(2)連結(jié)DE,交AB與點(diǎn)O,若BC=8,AO=,求△ABC的面積.
【答案】(1)見(jiàn)解析;(2)12
【解析】
(1)只要證明四邊形ADBE是平行四邊形,且∠ADB=90°即可;
(2)求出AB、AD,利用三角形面積解答即可.
(1)∵AE∥BC,BE∥AD,∴四邊形ADBE是平行四邊形.
∵AB=AC,AD是BC邊的中線(xiàn),∴AD⊥BC.
即∠ADB=90°,∴四邊形ADBE為矩形.
(2)∵在矩形ADCE中,AO=2.5,∴DE=AB=5.
∵D是BC的中點(diǎn),∴AE=DB=4,∴AB=2AO=5.
∵∠ADB=90°,∴AD=,∴△ABC的面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線(xiàn)分別交AB,AC于點(diǎn)D,E.
(1)若∠A=40°,求∠EBC的度數(shù);
(2)若AD=5,△EBC的周長(zhǎng)為16,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在等腰直角△ABC中,∠BAC=90°,點(diǎn)D從點(diǎn)B出發(fā)沿射線(xiàn)BC方向移動(dòng).在AD右側(cè)以AD為腰作等腰直角△ADE,∠DAE=90°.連接CE.
(1)求證:△ACE≌△ABD;
(2)點(diǎn)D在移動(dòng)過(guò)程中,請(qǐng)猜想CE,CD,DE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若AC=,當(dāng)CD=1時(shí),結(jié)合圖形,請(qǐng)直接寫(xiě)出DE的長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D,E分別是△ABC的邊AB,BC上的點(diǎn),AB=3BD,BE=CE.設(shè)△ADF的面積為S1,△CEF的面積為S2,若,則S1-S2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為∠AOB的平分線(xiàn)上一點(diǎn),PC⊥OA于點(diǎn)C,D為OA上一點(diǎn),E為OB上一點(diǎn),∠ODP=180°-∠OEP.
(1)求證:PD=PE.
(2)若OC=6,求OD+OE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2﹣2ax+3的圖象與x軸分別交于點(diǎn)A,B,與y軸交于點(diǎn)C,已知BO=CO.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E在線(xiàn)段OB上,過(guò)點(diǎn)E作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)P,連結(jié)PA,若PA⊥CE,垂足為點(diǎn)F,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線(xiàn),求證:直線(xiàn)CD是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AD是BC邊上的高線(xiàn),CE是AB邊上的中線(xiàn),DG⊥CE于G,且CD=AE.
(1)求證:CG=EG.
(2)求證:∠B=2∠ECB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com