【題目】如圖,已知:正方形ABCD,點(diǎn)ECB的延長(zhǎng)線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)GBEAE于點(diǎn)G.

(1)求證:GF=BF;

(2)若EB=1,BC=4,求AG的長(zhǎng);

(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AMDE于點(diǎn)O.求證:FOED=ODEF.

【答案】(1)證明見(jiàn)解析;(2)AG=;(3)證明見(jiàn)解析.

【解析】

(1)根據(jù)正方形的性質(zhì)得到ADBC,ABCD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;

(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計(jì)算即可;

(3)延長(zhǎng)GFAMH,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GFAD,得到等量代換得到,即,于是得到結(jié)論.

(1)∵四邊形ABCD是正方形,

ADBC,ABCD,AD=CD,

GFBE,

GFBC,

GFAD,

,

ABCD,

,

AD=CD,

GF=BF;

(2)EB=1,BC=4,

=4,AE=,

=4,

AG=;

(3)延長(zhǎng)GFAMH,

GFBC,

FHBC,

,

BM=BE,

GF=FH,

GFAD,

,,

,

FOED=ODEF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整,原題:如圖1,在平行四邊形ABCD中,點(diǎn)EBC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.=3,求的值.

(1)嘗試探究:

在圖1中,過(guò)點(diǎn)EEH∥ABBG于點(diǎn)H,則ABEH的數(shù)量關(guān)系是________,

CGEH的數(shù)量關(guān)系是________,

的值是________.

(2)類比延伸:

如圖2,在原題條件下,若=m(m>0)的值是________(用含有m的代數(shù)式表示),試寫(xiě)出解答過(guò)程.

(3)拓展遷移:

如圖3,梯形ABCD中,DC∥AB,點(diǎn)EBC的延長(zhǎng)線上的一點(diǎn),AEBD相交于點(diǎn)F,若=a,=b(a>0,b>0)的值是________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足下列條件的△ABC不是直角三角形的是( 。

A.A:∠B:∠C235B.A:∠B:∠C345

C.A﹣∠B=∠CD.BC3,AC4,AB5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,點(diǎn)Cy軸的正半軸上,OA=5,OC=4.

(1)如圖①,在AB上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo);

(2)如圖②,若OE上有一動(dòng)點(diǎn)P(不與O,E重合),從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿OE方向向點(diǎn)E勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5),過(guò)點(diǎn)PPMOEOD于點(diǎn)M,連接ME,求當(dāng)t為何值時(shí),以點(diǎn)P、M、E為頂點(diǎn)的三角形與△ODA相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2﹣(m+1)x+m

(1)求證:拋物線與x軸一定有交點(diǎn);

(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<0<x2,且,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新中梁山隧道20171121日開(kāi)放通行,原中梁山隧道將封閉升級(jí),擴(kuò)容改造工程預(yù)計(jì)20183月全部完工,屆時(shí)將實(shí)現(xiàn)雙8車道通行,隧道通行能力將增加一倍,沿線交通擁堵?tīng)顩r將有所緩解.圖中線段AB表示該工程的部分隧道.無(wú)人勘測(cè)機(jī)從隧道側(cè)的A點(diǎn)出發(fā)時(shí),測(cè)得C點(diǎn)正上方的E點(diǎn)的仰角為45°,無(wú)人機(jī)飛行到E點(diǎn)后,沿著坡度i=1:3的路線EB飛行,飛行到D點(diǎn)正上方的F點(diǎn)時(shí),測(cè)得A點(diǎn)的俯角為12°,其中EC=100米,A、B、C、D、E、F在同一平面內(nèi),則隧道AD段的長(zhǎng)度約為( 。┟,(參考數(shù)據(jù):tan12°≈0.2,cosl2°≈0.98)

A. 200 B. 250 C. 300 D. 540

查看答案和解析>>

同步練習(xí)冊(cè)答案