【題目】如圖,中,點(diǎn),分別是邊,上的點(diǎn),,點(diǎn)是邊上的一點(diǎn),連接交線段于點(diǎn),且,,,則S四邊形BCED( )
A.B.C.D.
【答案】B
【解析】
由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應(yīng)成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.
解:∵,,
∴GE=4
∵
∴△ADG∽△ABH,△AGE∽△AHC
∴
即,
解得:HC=6
∵DG:GE=2:1
∴S△ADG:S△AGE=2:1
∵S△ADG=12
∴S△AGE=6,S△ADE= S△ADG+S△AGE=18
∵
∴△ADE∽△ABC
∴S△ADE:S△ABC=DE2:BC2
解得:S△ABC=40.5
S四邊形BCED= S△ABC- S△ADE=40.5-18=22.5
故答案選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)已知矩形AOCD在平面直角坐標(biāo)系xOy中,∠CAO=60°,OA=2,B點(diǎn)的坐標(biāo)為(2,0),動點(diǎn)M以每秒2個(gè)單位長度的速度沿A→C→B運(yùn)動(M點(diǎn)不與點(diǎn)A、點(diǎn)B重合),設(shè)運(yùn)動時(shí)間為t秒.
(1)求經(jīng)過B、C、D三點(diǎn)的拋物線解析式;
(2)點(diǎn)P在(1)中的拋物線上,當(dāng)M為AC中點(diǎn)時(shí),若△PAM≌△PDM,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)M在CB上運(yùn)動時(shí),如圖(2)過點(diǎn)M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設(shè)矩形AEMF與△ABC重疊部分面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;
(4)如圖(3)點(diǎn)P在(1)中的拋物線上,Q是CA延長線上的一點(diǎn),且P、Q兩點(diǎn)均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點(diǎn),若點(diǎn)P到x軸的距離為d,△QPB的面積為2d,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校游戲節(jié)活動中,設(shè)計(jì)了一個(gè)有獎(jiǎng)轉(zhuǎn)盤游戲,如圖,A轉(zhuǎn)盤被分成三個(gè)面積相等的扇形,B轉(zhuǎn)盤被分成四個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字,先轉(zhuǎn)動A轉(zhuǎn)盤,記下指針?biāo)竻^(qū)域內(nèi)的數(shù)字,再轉(zhuǎn)動B轉(zhuǎn)盤,記下指針?biāo)竻^(qū)域內(nèi)的數(shù)字(當(dāng)指針在邊界線上時(shí),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個(gè)區(qū)域內(nèi)為止)
(1)請利用畫樹狀圖或列表的方法(只選其中一種),表示出轉(zhuǎn)轉(zhuǎn)盤可能出現(xiàn)的所有結(jié)果;
(2)如果將兩次轉(zhuǎn)轉(zhuǎn)盤指針?biāo)竻^(qū)域的數(shù)據(jù)相乘,乘積是無理數(shù)時(shí)獲得一等獎(jiǎng),那么獲得一等獎(jiǎng)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,點(diǎn)D、E分別是邊AB、AC上的動點(diǎn)(點(diǎn)D、E不與△ABC的頂點(diǎn)重合),AD和BE交于點(diǎn)F,且∠AFE=∠ABC
(1)求證:△ABD∽△BCE;
(2)設(shè)AE=x,ADFD=y,求y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)當(dāng)△AEF是等腰三角形時(shí),求DF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點(diǎn)為位似中心,相似比為9:4,將OB向右側(cè)放大,B點(diǎn)的對應(yīng)點(diǎn)為C.
(1)求C點(diǎn)坐標(biāo)及直線BC的解析式:
(2)點(diǎn)P從點(diǎn)A開始以每秒2個(gè)單位長度的速度勻速沿著x軸向右運(yùn)動,若運(yùn)動時(shí)間用t秒表示.△BCP的面積用S表示,請你直接寫出S與t的函數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),已知點(diǎn),且對稱軸為直線.
(1)求該拋物線的解析式;
(2)點(diǎn)是第四象限內(nèi)拋物線上的一點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,點(diǎn)是拋物線上的一個(gè)動點(diǎn),過點(diǎn)作軸,垂足為.當(dāng)時(shí),直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=3,M是BC的中點(diǎn),DE⊥AM于點(diǎn)E.
(1)求證:△ADE∽△MAB;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,平分,交軸于點(diǎn),點(diǎn)是軸上一點(diǎn),經(jīng)過點(diǎn)、,與軸交于點(diǎn),過點(diǎn)作,垂足為,的延長線交軸于點(diǎn),
(1)求證:為的切線;
(2)求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com