【題目】如圖,ABO 的直徑,點DO 上(點D不與A,B重合),直線AD交過點B的切線于點C,過點DO 的切線DEBC于點E.

(1)求證:BE=CE;

(2)若DE平行AB,求sin∠ACO 的值.

【答案】(1)證明見解析;(2)sinACO=.

【解析】

1)證明:連接OD,如圖,利用切線長定理得到EB=ED,利用切線的性質得ODDEABCB,再根據等角的余角相等得到∠CDE=ACB,則EC=ED,從而得到BE=CE;

2)作OHADH,如圖,設的半徑為r,先證明四邊形OBED為正方形得DE=CE=r,再利用△AOD和△CDE都為等腰直角三角形得到,接著根據勾股定理計算出,然后根據正弦的定義求解.

1)證明:連接,如圖,

的切線,

,,

,,

,

,

,

2)解:作,如圖,設的半徑為,

,

四邊形為矩形,

四邊形為正方形,

易得都為等腰直角三角形,

,,

中,

中,

的值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點落在點處,于點,連接

(1)求證:

(2)求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(1,2),B(3,2),連接AB. 若對于平面內一點P,線段AB上都存在點Q,使得PQ≤1,則稱點P是線段AB的“臨近點”.

(1)在點C(0,2),D(2,),E(4,1)中,線段AB的“臨近點”是__________;

(2)若點M(m,n)在直線上,且是線段AB的“臨近點”,求m的取值范圍;

(3)若直線上存在線段AB的“臨近點”,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】地鐵10號線某站點出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據:,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=3,BC=4,若AC,BC邊上的中線BE,AD垂直相交于點O,則AB=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,點F是 BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交射線AB、AC于點F、G,連接BE.

(1) 如圖1,當點D在線段BC上時:

①求證:△AEB≌△ADC;②求證:四邊形BCGE是平行四邊形;

(2)如圖2,當點D在BC的延長線上,且CD=BC時,試判斷四邊形BCGE是什么特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如下所示,下列5個結論:①;;;;(的實數(shù)),其中正確的結論有幾個?

A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,D是邊BC的中點.

1如圖1,求證:△ABD和△ACD的面積相等;

如圖2,延長ADE,使DE=AD,連結CE,求證:AB=EC

2)當∠BAC=90°時,可以結合利用以上各題的結論,解決下列問題:

求證:ADBC(即:直角三角形斜邊上的中線等于斜邊的一半)

已知BC=4,將△ABD沿AD所在直線翻折,得到△ADB',若△ADB'與△ABC重合部分的面積等于△ABC面積的,請畫出圖形(草圖)并求出AC的長度.

查看答案和解析>>

同步練習冊答案