【題目】如圖,一次函數(shù)的圖像與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為,二次函數(shù)的圖像經(jīng)過A、B、C三點(diǎn).
(1)求二次函數(shù)的解析式
(2)如圖1,已知點(diǎn)在拋物線上,作射線BD,點(diǎn)Q為線段AB上一點(diǎn),過點(diǎn)Q作軸于點(diǎn)M,作于點(diǎn)N,過Q作軸交拋物線于點(diǎn)P,當(dāng)QM與QN的積最大時,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接AP,若點(diǎn)E為拋物線上一點(diǎn),且滿足,求點(diǎn)E的坐標(biāo).
【答案】(1);(2);(3)或
【解析】
(1)求出A、B的坐標(biāo),設(shè)二次函數(shù)解析式為,把A(0,2)代入即可得出結(jié)論;
(2)先求出D的坐標(biāo)和直線BD的解析式,過D作DT⊥x軸于T,可求得∠DBO=45°.設(shè)Q(m,m+2),則G(m,-m+4),MQ=m.設(shè)∠ABO=α,則∠NBQ=45°-α,∠MQB=180°-α.證明ΔGQN為等腰直角三角形,表示出NQ,MQNQ,利用二次函數(shù)的性質(zhì)解答即可;
(3)如圖,過A作AH⊥PE于點(diǎn)H,解Rt△APH,得到AH=1,PH=2.設(shè)H(m,n),利用兩點(diǎn)間距離公式可求出H的坐標(biāo),進(jìn)而求出點(diǎn)E的坐標(biāo).
(1)在中,令x=0,得y=2,∴A(0,2);
令y=0,得,解得:x=4,∴B(4,0).
設(shè)二次函數(shù)解析式為,
將A(0,2)代入得:
解得:,
∴.
(2)∵點(diǎn)D(1,n)在拋物線上,∴n==3,
∴D(1,3).
設(shè)直線BD的解析式為y=kx+b,則,
解得:,
∴直線BD的解析式為:y=-x+4.
過D作DT⊥x軸于T,則OT=1,DT=3.
∵OB=4,∴BT=OB-OT=4-1=3,
∴DT=BT,
∴∠DBO=45°.
設(shè)Q(m,m+2),則G(m,-m+4),MQ=m.
設(shè)∠ABO=α,則∠NBQ=45°-α
∠MQB=180°-α.
又∵∠PQM=90°,∠NQB=90°-(45°-α)=45°+α,
∴∠GQN=360°-90°-(180°-α)-(45°+α)=45°,
∴ΔGQN為等腰直角三角形,
∴NQ=,
∴MQNQ=.
當(dāng)m=2時,QMQN最大,此時P(2,3).
(3)如圖,過A作AH⊥PE于點(diǎn)H,其中,∠APE=∠ABO.
又A(0,2),P(2,3),
,
∴,
∴PH=2AH.
∵AP=,,
∴,
∴AH=1,PH=2.
設(shè)H(m,n),
則,
,
解得:;,
∴,.
①易求直線PH的解析式為:
令
解得:(舍)
∴;
②易求直線PH1的解析式為:.
令,
解得:,
∴.
綜上所述:符合題意的E點(diǎn)坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)求證:△ABC為直角三角形;
(3)如圖,動點(diǎn)E,F同時從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動,點(diǎn)F以每秒個單位長度的速度沿射線AC方向運(yùn)動.當(dāng)點(diǎn)F停止運(yùn)動時,點(diǎn)E隨之停止運(yùn)動.設(shè)運(yùn)動時間為t秒,連結(jié)EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.當(dāng)點(diǎn)F在AC上時,是否存在某一時刻t,使得△DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點(diǎn)的直線與反比例函數(shù)()的圖象交于,兩點(diǎn),點(diǎn)在第一象限.點(diǎn)在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點(diǎn).為的平分線,過點(diǎn)作的垂線,垂足為,連結(jié).若是線段中點(diǎn),的面積為4,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求的面積.
(3)根據(jù)圖象寫出反比例函數(shù)y≥n的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在全市甲、乙兩個區(qū)內(nèi)進(jìn)行了調(diào)查統(tǒng)計,將調(diào)查結(jié)果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結(jié)合圖中信息,解決下列問題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù).
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù).
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為不滿意的4位市民中隨機(jī)選擇2位進(jìn)行回訪,已知4位市民中有2位來自甲區(qū),另2位來自乙區(qū),請用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長AE交BD的延長線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長線于點(diǎn)C.
(1)若OACD,求陰影部分的面積;
(2)求證:DEDM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點(diǎn)P為線段OB上的一個動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.
①當(dāng)△OPC為等腰三角形時,求點(diǎn)P的坐標(biāo);
②求△BOD 面積的最大值,并寫出此時點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為
(1)求直線的解析式;
(2)直線與軸交于點(diǎn),若點(diǎn)是直線上一動點(diǎn)(不與點(diǎn)重合),當(dāng)與相似時,求點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是的直徑,點(diǎn)是上一點(diǎn),點(diǎn)是弧的中點(diǎn),弦于點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn),連接,分別交于點(diǎn),連接.給出下列結(jié)論:①;②;③點(diǎn)是的外心;④.其中正確的是( )
A.①②③B.②③④C.①③④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com