【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF,CE,下列說法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是( )
A. ①② B. ③⑤ C. ①③④ D. ①④⑤
【答案】C
【解析】
根據(jù)三角形中線的定義可得BD=CD,根據(jù)等底等高的三角形的面積相等判斷出①正確,然后利用“邊角邊”證明△BDF和△CDE全等,根據(jù)全等三角形對應(yīng)邊相等可得CE=BF,全等三角形對應(yīng)角相等可得∠F=∠CED,再根據(jù)內(nèi)錯角相等,兩直線平行可得BF∥CE.
∵AD是△ABC的中線,
∴BD=CD,
∴△ABD和△ACD面積相等,故①正確;
∵AD為△ABC的中線,
∴BD=CD,∠BAD和∠CAD不一定相等,故②錯誤;
在△BDF和△CDE中,
,
∴△BDF≌△CDE(SAS),故③正確;
∴∠F=∠DEC,
∴BF∥CE,故④正確;
∵△BDF≌△CDE,
∴CE=BF,故⑤錯誤,
正確的結(jié)論為:①③④,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點,且MN=21,求線段PQ的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若則稱與是關(guān)于1的平衡數(shù)。
(1)5與______是關(guān)于1的平衡數(shù);
(2)與________是關(guān)于1的平衡數(shù)(用含的代數(shù)式表示);
(3)若判斷與是否是關(guān)于1的平衡數(shù),并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,A(-1,5)、B(-1,0)、C(-4,3)
(1) 求出△ABC的面積
(2) 在圖形中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出A1、B1、C1的坐標
(3) 是否存在一點P到AC、AB的距離相等,同時到點A、點B的距離也相等.若存在保留作圖痕跡標出點P的位置,并簡要說明理由;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應(yīng)用,截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識來解決數(shù)學問題.
(1)如圖1,在△ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使 DE=AD,再連接 BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線 AD的取值范圍是_______.
問題解決:
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分別是邊BC,CD上的兩點,且∠EAF=∠BAD,求證:BE+DF=EF.
問題拓展:
(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=60°,點D是△ABC 外角平分線上一點,DE⊥AC交 CA延長線于點E,F(xiàn)是 AC上一點,且DF=DB.
求證:AC﹣AE=AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問題:
(1)如果將三角形平移,使得點平移到圖中點位置,點、點的對應(yīng)點分別為點、點,請畫出三角形;
(2)畫出三角形關(guān)于點成中心對稱的三角形.
(3)三角形與三角形是否關(guān)于某個點成中心對稱?如果是,請在圖中畫出這個對稱中心,并記作點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下列各題
(1)3b﹣2a2﹣(﹣4a+a2+3b)+a2;
(2)﹣13﹣(1﹣)××[2﹣(﹣3)2];
(3)﹣|﹣23|+15﹣|4.5﹣(﹣2.5)|;
(4)89′25″﹣48′58″;
(5)化簡求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知多項式x2ym+1+xy2-2x3+8是六次四項式,單項式-x3ay5-m的次數(shù)與多項式的次數(shù)相同,求m,a的值;
(2)已知多項式mx4+(m-2)x3+(2n+1)x2-3x+n不含x2和x3的項,試寫出這個多項式,再求當x=-1時多項式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的邊長為,是邊上的高所在的直線,點為直線上的一動點,連接并將繞點逆時針旋轉(zhuǎn)至,連接,則的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com