【題目】如圖,在中,,三條內(nèi)角平分線交于點,過點作垂線,分別交、于點、,請寫出圖中相似的三角形,并說明其中兩對相似的理由.
【答案】△ABD∽△ACD,△AMD∽△AND,△BMD∽△BDC∽△DNC,理由見解析
【解析】
根據(jù)角平分線和垂線的性質易證△AMD∽△AND,根據(jù)等腰三角形底角相等的性質可以判定∠ABD=∠ACD,即可證MN∥BC,進而可以證明△AMD∽△AND,△BMD∽△BDC∽△DNC,△ABD∽△ACD,即可解題.
解:△ABD∽△ACD,△AMD∽△AND,△BMD∽△BDC∽△DNC,
證明:△ABD∽△ACD,△AMD∽△AND,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABD=∠ACD,
∵AD為角平分線,
∴△ABD∽△ACD,
∵∠ADM=∠ADN,∠BAD=∠CAD,
∴△ADM∽△ADN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O直徑,CD為⊙O的切線,C為切點,過A作CD的垂線,垂足為D.
(1)求證:AC平分∠BAD;
(2)若⊙O半徑為5,CD=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,設點P的橫坐標為t;
①當S△ACP=S△ACN時,求點P的坐標;
②是否存在點P,使得△ACP是以AC為斜邊的直角三角形?若存在,求點P的坐標;若不存在,請說明理由;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,請直接寫出點E的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰中,,點在邊的反向延長線上,且,點在邊的延長線上,且,設,.
(1)求線段的長;
(2)求關于的函數(shù)解析式,并寫出定義域;
(3)當平分時,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為x m.
(1)設垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,的頂點在正方形兩條對角線的交點處,,將繞點旋轉,旋轉過程中的兩邊分別與正方形的邊和交于點和點(點與點,不重合).
(1)如圖①,當時,求,,之間滿足的數(shù)量關系,并證明;
(2)如圖②,將圖①中的正方形改為的菱形,其他條件不變,當時,(1)中的結論變?yōu)?/span>,請給出證明;
(3)在(2)的條件下,若旋轉過程中的邊與射線交于點,其他條件不變,探究在整個運動變化過程中,,,之間滿足的數(shù)量關系,直接寫出結論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2-3與y2=(x-3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:①無論x取何值,y2的值總是正數(shù);②a=1;③當x=0時,y2-y1=4;④2AB=3AC;其中正確結論是( 。
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點F在BC邊上,過A,B,F三點的⊙O交AC于另一點D,作直徑AE,連結EF并延長交AC于點G,連結BE,BD,四邊形BDGE是平行四邊形.
(1)求證:AB=BF.
(2)當F為BC的中點,且AC=3時,求⊙O的直徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com