【題目】已知:如圖,ABC 中,ADBC 于點(diǎn) D,BE 是∠ABC 的平分線,若∠DAC=30°,∠BAC=80°,求:∠AOB 的度數(shù).

【答案】AOB 110°

【解析】

ADBC利用三角形內(nèi)角和定理結(jié)合∠DAC=30°即可得出∠C=60°、∠ABC=40°,再根據(jù)角平分線定義可得出∠ABE=20°,在△AOB中根據(jù)三角形內(nèi)角和定理即可得出∠AOB的度數(shù).

AD BC

ADC 90,

∵∠DAC 30

C 60,

BAC 80 ,∠DAC 30,

BAD 50,

又∵在△ABC 中, C 60 ° BAC 80 °,

ABC 180 C BAC =40°,

BE 是∠ABC 的平分線,

ABO CBO 20 °,

又∵在△ABO 中, BAO 50 °, ABO 20°,

AOB 180 ABO BAO =110°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為a的菱形ABCD中,∠DAB60°,E是異于AD兩點(diǎn)的動(dòng)點(diǎn),FCD上的動(dòng)點(diǎn),滿足AE+CFa,△BEF的周長最小值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形:

如圖1,已知:在中,,,直線m經(jīng)過點(diǎn)A,直線m直線m,垂足分別為點(diǎn)D、試猜想DE、BD、CE有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出;

組員小穎想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將中的條件改為:在中,,D、A、E三點(diǎn)都在直線m上,并且有其中為任意銳角或鈍角如果成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來解決問題:

如圖3F角平分線上的一點(diǎn),且均為等邊三角形,D、E分別是直線mA點(diǎn)左右兩側(cè)的動(dòng)點(diǎn)、EA互不重合,在運(yùn)動(dòng)過程中線段DE的長度始終為n,連接BD、CE,若,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,點(diǎn)D,E,F(xiàn)分別在BC,AB,AC邊上.

(1)當(dāng)點(diǎn)D,E,F(xiàn)分別為BC,AB,AC邊的中點(diǎn)時(shí),求證:△BED≌△DFC;
(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種樹苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,B種樹苗的數(shù)量不超過35棵,但不少于A種樹苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若一次函數(shù)y=ax+b的圖象經(jīng)過二、三、四象限,則二次函數(shù)y=ax2+bx的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交直線AE于點(diǎn)O.

(1)若點(diǎn)O在四邊形ABCD的內(nèi)部,

①如圖1,若AD∥BC,∠B=40°,∠C=70°,則∠DOE= °;

②如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關(guān)系,并將你的探索過程寫下來.

(2)如圖3,若點(diǎn)O在四邊形ABCD的外部,請(qǐng)你直接寫出∠B、∠C、∠DOE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A '處,點(diǎn)B落在點(diǎn)B '處,若∠1=115° ,則圖中∠2的度數(shù)為(

A. 40°B. 45°C. 50°D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案