【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM; ②△EOB≌△CMB;③MB:OE=3:2;④四邊形EBFD是菱形.其中正確結(jié)論是( 。
A.①②③B.②③④C.①④D.①③④
【答案】D
【解析】
先證明△BOC是等邊三角形,得FO=FC,BO=BC,故①正確;因為△EOB≌△FOB≌△FCB,故△EOB不會全等于△CBM,故②錯誤;再證明四邊形EBFD是平行四邊形,由BE=BF推出四邊形EBFD是菱形故③正確,設FM=a,則OF=OE=2a,FB=4a,由此推出④正確,由此不難得到答案.
∵四邊形ABCD是矩形,
∴∠ABC=90°,
∵AO=OC,
∴BO=OC=OA,
∵∠COB=60°,
∴△BCO是等邊三角形,
∴∠ACB=∠OBC=60°,BC=OB,
∵FO=FC,BO=BC,
∴FB⊥OC,OM=CM,故①正確,
∵∠OBC=60°,
∴∠ABO=30°,
∵△OBF≌△CBF,
∴∠OBM=∠CBM=30°,
∴∠ABO=∠OBF,
∵AB∥CD,
∴∠OCF=∠OAE,
∵OA=OC,
易證△AOE≌△COF,
∴OE=OF,
∴OB⊥EF,
∴四邊形EBFD是菱形,
∴③正確,
∵△EOB≌△FOB≌△FCB,
∴△EOB≌△CMB錯誤.
∴故②錯誤,
∴∠CBM=∠MBO=∠OBA=30°,∠FCO=∠FOC=30°,∠OFB=∠BFC=60°,
∴∠EBF=∠BFE=60°,
∴△EFB是等邊三角形,
∴BE=BF,
在△FOC和△EOA中,
,
∴△FOC≌△EOA(AAS),
∴AE=CF,OE=OF,
∵DC=AB,
∴DF=EB,
∵DF∥EB,
∴四邊形EBFD是平行四邊形,
∵BE=BF,
∴四邊形EBFD是菱形,故③正確,
設FM=a,
在Rt△OFM中,∵∠FOM=30°,
∴OF=2FM=2a,
在Rt△FOB中,∵∠FOB=90°,∠FBO=30°,
∴BF=2OF=4a,
∴BM=3a,
∴BM:OE=3:2,故④正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點坐標;
(3)若拋物線上有兩點A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的發(fā)散點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=3r,則稱P′為點P關于⊙C的發(fā)散點.下圖為點P及其關于⊙C的發(fā)散點P′的示意圖.特別地,當點P′與圓心C重合時,規(guī)定CP′=0.
根據(jù)上述材料,請你解決以下問題:
(1)當⊙O的半徑為1時,
①在點關于⊙O的發(fā)散點的是點 ;其對應發(fā)散點的坐標是 ;
②點P在直線上,若點P關于⊙O的發(fā)散點P′存在,且點P′不在x軸上,求點P的橫坐標m的取值范圍;
(2)⊙C的圓心C在x軸上,半徑為1,直線與x軸、y軸分別交于點A,B.若線段AB上存在點P,使得點P關于⊙C的發(fā)散點P′在⊙C的內(nèi)部,請直接寫出圓心C的橫坐標n的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種水果,迸價為每箱40元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱72元,每月可銷售60箱.經(jīng)市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降低2元,則每月的銷量將增加10箱,設每箱水果降價x元(x為偶數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關系式和自變量x的取值范圍.
(2)若該超市在銷售過程中每月需支出其他費用500元,則如何定價才能使每月銷售水果的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(不與點B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點M、P、N.判斷線段DN、MB、EC之間的數(shù)量關系,并說明理由.
問題探究:在“問題情境”的基礎上,
(1)如圖2,若垂足P恰好為AE的中點,連接BD,交MN于點Q,連接EQ,并延長交邊AD于點F.求∠AEF的度數(shù);
(2)如圖3,當垂足P在正方形ABCD的對角線BD上時,連接AN,將△APN沿著AN翻折,點P落在點P'處.若正方形ABCD的邊長為4 ,AD的中點為S,求P'S的最小值.
問題拓展:如圖4,在邊長為4的正方形ABCD中,點M、N分別為邊AB、CD上的點,將正方形ABCD沿著MN翻折,使得BC的對應邊B'C'恰好經(jīng)過點A,C'N交AD于點F.分別過點A、F作AG⊥MN,FH⊥MN,垂足分別為G、H.若AG=,請直接寫出FH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,CD∥x軸交拋物線于另一點D,連結(jié)AC,DE∥AC交邊CB于點E.
(1)求A,B兩點的坐標;
(2)求△CDE與△BAC的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件設每件童裝降價x元時,平均每天可盈利y元.
寫出y與x的函數(shù)關系式;
當該專賣店每件童裝降價多少元時,平均每天盈利400元?
該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com