如圖,已知正方形ABCD的邊長為4,點E、F分別從C、A兩點同時出發(fā),以相同的速度作直線運動.已知點E沿射線CB運動,點F沿邊BA的延長線運動,連結(jié)DF、DE、EF,EF與對角線AC所在的直線交于點M,DE交AC于點N.
(1)求證:DE⊥DF;
(2)設(shè)CE=x,△AMF的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)隨著點E在射線CB上運動,NA•MC的值是否會發(fā)生變化?若不變,請求出NA•MC的值;若變化,請說明理由.
考點:四邊形綜合題
專題:
分析:(1)易得△ADF≌△CDE,從而得到∠FDA=∠EDC,根據(jù)∠FDA+∠ADE=∠ADE+∠EDC=90°,即可證得DE⊥DF;
(2)從E作EP垂直BC,交AC于P,證得△AFM≌△PEM后得到MF=ME,從而得到△MFA中AF上的高為BE的一半,利用三角形的面積表示方法表示出兩個變量之間的關(guān)系即可;
(3)證得△MCD∽△DAN后即可得到:MC:DA=DC:NA,從而將比例式轉(zhuǎn)化為等積式后即可得到:MC×NA=DA×DC=4×4=16,進而說明NA和MC的乘積不發(fā)生變化.
解答:解:(1)E、F分別從C、A兩點同時出發(fā),以相同的速度作直線運動,
∴CE=AF,
在△ADF和△CDE中,
AD=CD
∠DAF=∠DCE=90°
AF=CE

∴△ADF≌△CDE(SAS),
∴∠FDA=∠EDC,
∴∠FDA+∠ADE=∠ADE+∠EDC=90°,
∴DE⊥DF;

(2)當點E在BC上時,過點E作EP⊥BC,交AC于P
∵AF⊥BC,EP⊥BC,
∴AF∥EP,∠AFM=∠PEM,∠FAM=∠EPM
∵P在AC上,∠ECP=45°,
∴CE=PE,AF=PE,
在△AFM和△PEM中,
∠AFM=∠PEM
∠FAM=∠EPM
AE=PE

∴△AFM≌△PEM(AAS),
∴MF=ME,
∴△MFA中AF上的高為BE的一半,
∴y=
1
2
1
2
(4-x)=-
1
4
x2+x(0≤x≤4);
同理,當點E在BC的延長線上時,y=
1
4
x2-x(x>4);

(3)由全等可得DE=DF,
∴△DEF為等腰直角三角形,∠DEF=45°
∵M為EF中點,
∴DM⊥EF.
∴∠MDE=45°
∵∠CMD為△AMD的外角,
∴∠CMD=∠MDA+∠DAC=∠MDA+45°,
∠ADN=∠MDA+∠MDE=∠MDA+45°,
∴∠CMD=∠ADN
∠DCM=∠DAN=45°
∴△MCD∽△DAN
∴MC:DA=DC:NA
∴MC×NA=DA×DC=4×4=16
∴NA和MC的乘積不發(fā)生變化.
點評:本題考查了四邊形的綜合知識,題目中涉及到了相似三角形和全等三角形的知識,難度不是很大,但涉及的知識點比較多.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明學習了“第八章  冪的運算”后做這樣一道題:若(2x-3)x+3=1,求x的值,他解出來的結(jié)果為x=1,老師說小明考慮問題不全面,聰明的你能幫助小明解決這個問題嗎?
小明解答過程如下:
解:因為1的任何次冪為1,所以2x-3=1,x=2.且2+3=5
故(2x-3)x+3=(2×2-3)2+3=15=1,所以x=2
你的解答是:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

y+2
8
-
2y-1
6
=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

甲、乙兩人共同解方程組
ax+5y=15 ①
4x-by=-2 ②
,由于甲錯了方程①中的a,得到方程組的解為
x=-3
y=-1
;乙看錯了方程②中的b,得到方程組的解為
x=5
y=4
,
(1)求出a,b的值;
(2)求2a-3b+5的立方根;
(3)此方程組正確的解應(yīng)該是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=110°,則∠BFD的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一棵大樹在離地面9m處折斷,樹頂端離樹底部12m,則這棵樹折斷之前的高度是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,已知AB=8,BC=6,CA=4,D、E分別是AB、AC邊的中點,則DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一個等腰三角形周長是16,其中一邊長是6,則另外兩條邊長分別是
 

查看答案和解析>>

同步練習冊答案