【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,點E、F分別在菱形的邊BC、CD上運動,且∠EAF=60°且E、F不與B、C、D重合,連接AC交EF于P點.
(1)證明:不論E、F在BC、CD上如何運動,總有BE=CF;
(2)當(dāng)BE=1時,求AP的長;
(3)當(dāng)點E、F在BC、CD上滑動時,分別探討四邊形AECF和△CEF的面積是否發(fā)生變化?如果不變,直接寫出這個定值;如果變化,是最大值還是最小值?并直接寫出最大(或最小)值.
【答案】(1) 見解析;(2) AP=,(3)四邊形AECF的面積不變,定值為;△CEF的面積變化最大值.
【解析】
(1)先求證AB=AC,進而求證△ABC、△ACD為等邊三角形,得∠4=60°,AC=AB進而求證△ABE≌△ACF,即可求得BE=CF;
(2)首先利用勾股定理得出AE的長,進而得出△AEF是等邊三角形,進而得出△APF∽△AFC,進而求出AP的長;
(3)根據(jù)△ABE≌△ACF可得S△ABE=S△ACF,故根據(jù)S四邊形AECF= S△ABC即可解題;當(dāng)正三角形AEF的邊AE與BC垂直時,邊AE最短.△AEF的面積會隨著AE的變化而變化,且當(dāng)AE最短時,正三角形AEF的面積會最小,又根據(jù)S△CEF=S四邊形AECF-S△AEF,則△CEF的面積就會最大.
(1)證明:如圖1,
∵菱形ABCD,∠BAD=120°,
∵∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC、△ACD為等邊三角形
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF.
(2)解:如圖2,過點E作EM⊥AB于點M,
∵BE=1,∠B=60°,∠BME=90°,
∴BM=,則ME=,
∴AM=,
∴AE=,
由(1)得:AE=AF,
又∵∠EAF=60°,
∴△AEF是等邊三角形,
∴AF=,∠AFP=60°,
∴∠AFP=∠4,
又∵∠3=∠3,
∴△APF∽△AFC,
∴,
∴,
解得:AP=;
(3)解:四邊形AECF的面積不變,△CEF的面積發(fā)生變化.
理由:由(1)得△ABE≌△ACF,
則S△ABE=S△ACF,
故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
如圖3,作AH⊥BC于H點,
則BH=2,
S四邊形AECF=S△ABC=BCAH=BC,
由“垂線段最短”可知,當(dāng)正三角形AEF的邊AE與BC垂直時,邊AE最短.
故△AEF的面積會隨著AE的變化而變化,且當(dāng)AE最短時,
正三角形AEF的面積會最小,
又S△CEF=S四邊形AECF-S△AEF,則△CEF的面積就會最大.
則S△CEF=S四邊形AECF-S△AEF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,BE,DF,MN是三根直立于地面的木桿在同一燈光下的影子,請畫出第三根木桿,(畫出示意圖,不用寫畫法)
(2)如圖②,小明在陽光下利用標(biāo)桿AB測量校園內(nèi)一棵小樹CD的高度,在同一時刻測得標(biāo)桿的影長BE為2 m,小樹的影長落在地面上的部分DM為3 m,落在墻上的部分MN為1 m,若標(biāo)桿AB的長為1.5 m,求小樹的高度CD.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)積極健康的生活方式、豐富居民生活,區(qū)推出系列文化活動,其中的乒乓球比賽采用單循環(huán)賽制(即每兩名參賽者之間都要進行一場比賽)經(jīng)統(tǒng)計,此次乒乓球比賽男子組共要進行28場單打.
(1)參加此次乒乓球男子單打比賽的選手有多少名?
(2)在系列文化活動中,社區(qū)與某旅行社合作組織“豐收節(jié)”采摘活動收費標(biāo)準是:如果人數(shù)不超過20人,每人收費200元;如果超過20人,每增加1人,每人費用都減少5元經(jīng)統(tǒng)計,社區(qū)共支付“采摘活動”費用4500元求參加此次“豐收節(jié)”采摘的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個正方形依次放入△ABC中,則第n個正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3元/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90,BC=6,AC=8.動點M從點B開始沿邊BC向點C以每秒1個單位長度的速度運動,動點N從點C開始沿邊CA向點A以每秒2個單位長度的速度運動,點M、N同時出發(fā),且當(dāng)其中一點到達端點時,另一點也隨之停止運動.過點M作MD∥AC,交AB于點D,連接MN.設(shè)運動時間為t秒(t≥0).
(1)當(dāng)t為何值時,四邊形ADMN為平行四邊形?
(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說明理由.并探究只改變點N的速度(勻速運動),使四邊形ADMN在某一時刻為菱形,求點N的速度;
(3)如圖2,在整個運動過程中,求出線段MN中點P所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生“自主學(xué)習(xí)、合作交流”的情況,對某班部分同學(xué)進行了一段時間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,D類所占圓心角為 ;
(3)學(xué)校想從被調(diào)查的A類(1名男生、2名女生)和D類(男、女生各占一半)中分別選取一 位同學(xué)進行“一幫一”互助學(xué)習(xí),請用畫樹狀圖或列表的方法求所選的兩位同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是邊AD上一點,CE與BD相交于點O,CE與BA的延長線相交于點G,已知DE=2AE,CE=8.
(1)求GE的長;
(2)若=,=,用、表示;
(3)在圖中畫出+.(不需要寫畫法,但需要結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2, AD=2,動點P從點A出發(fā)向終點D運動,連BP,并過點C作CH⊥BP,垂足為H.①△ABP∽△HCB;②AH的最小值為-; ③在運動過程中,BP掃過的面積始終等于CH掃過的面積:④在運動過程中,點H的運動路徑的長為, 其中正確的有( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com