【題目】如圖,甲、乙兩只捕撈船同時從A港出海捕魚,甲船以每小時15千米的速度沿西偏北30°方向前進,乙船以每小時15千米的速度沿東北方向前進,甲船航行2小時到達C處,此時甲船發(fā)現漁具丟在乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕,結果兩船在B處相遇.
(1)甲船從C處追趕上乙船用了多少時間?
(2)甲船追趕乙船的速度是多少?
【答案】(1)2;(2)15+15.
【解析】
試題分析:(1)根據方向角可以得到∠BCA=45°,∠B=30°,過A作AD⊥BC于點D,在Rt△ACD中,根據三角函數就可求得AD的長,再在直角△ABD中,根據三角函數即可求得AB的長,就可求得時間;(2)求出BC的長,根據(1)中的結果求得時間,即可求得速度.
試題解析:(1)如圖,過A作AD⊥BC于點D.作CG∥AE交AD于點G.
∵乙船沿東北方向前進,
∴∠HAB=45°,
∵∠EAC=30°,
∴∠CAH=90°-30°=60°
∴∠CAB=60°+45°=105°.
∵CG∥EA,
∴∠GCA=∠EAC=30°.
∵∠FCD=75°,
∴∠BCG=15°,∠BCA=15°+30°=45°,
∴∠B=180°-∠BCA-∠CAB=30°.
在直角△ACD中,∠ACD=45°,AC=2×15=30.
AD=ACsin45°=30×=30千米.
CD=ACcos45°=30千米.
在Rt△ABD中,∠B=30°.
則AB=2AD=60千米.
則甲船從C處追趕上乙船的時間是:60÷15-2=2小時;
(2)BC=CD+BD=30+30千米.
則甲船追趕乙船的速度是每小時(30+30)÷2=15+15千米/小時.
答:甲船從C處追趕上乙船用了2小時,甲船追趕乙船的速度是每小時15+15千米.
科目:初中數學 來源: 題型:
【題目】某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據圖中信息解答下列問題:
(1)2018年春節(jié)期間,該市A,B,C,D,E這五個景點共接待游客 萬人,扇形統(tǒng)計圖中E景點所對應的圓心角的度數是 ,并補全條形統(tǒng)計圖.
(2)甲,乙兩個旅行團在A,B,D三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2011年9月1日,長春首屆航空開放日在長春大房身機場正式舉行,空軍八一飛行表演隊的新?lián)Q裝殲-10飛機,進行了精彩的特技飛行表演,其中一架飛機起飛0.5千米后的高度變化如下表:
高度變化 | 上升4.2 | 下降3.5 | 上升1.4 | 下降1.2 |
記作 | +4.2 | -3.5 | +1.4 | -1.2 |
(1)此時這架飛機飛離地面的高度是多少千米?
(2)如果飛機做特技表演時,有4個規(guī)定動作,起飛后高度變化如下:上升3.6干米,下降2.8千米,再上升1.5千米,最后下降0.9千米.若飛機平均上升1干米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么這架飛機在這4個特技表演過程中,一共消耗了多少升燃油?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現,該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數關系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M、N;②作直線MN交AB于點D,連接CD.若∠B=30°,∠A=55°,則∠ACD的度數為( )
A. 65°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(0,6),點B在x軸的正半軸上.若點P、Q在線段AB上,且PQ為某個一邊與x軸平行的矩形的對角線,則稱這個矩形為點P、Q的“涵矩形”。下圖為點P、Q的“涵矩形”的示意圖.
(1)點B的坐標為(3,0);
①若點P的橫坐標為,點Q與點B重合,則點P、Q的“涵矩形”的周長為 .
②若點P、Q的“涵矩形”的周長為6,點P的坐標為(1,4),則點E(2,1),F(1,2),G(4,0)中,能夠成為點P、Q的“涵矩形”的頂點的是 .
(2)四邊形PMQN是點P、Q的“涵矩形”,點M在△AOB的內部,且它是正方形;
①當正方形PMQN的周長為8,點P的橫坐標為3時,求點Q的坐標.
②當正方形PMQN的對角線長度為/2時,連結OM.直接寫出線段OM的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個由若干個排列整齊的數組成的正方形中,圖中任意一橫行、一縱行及對角線的幾個數之和都相等,具有這種性質的圖表,稱為“幻方”,中國古代稱為“河圖”、“洛書”,又叫“縱橫圖”.3階幻方也稱九宮格,即把1,2,3,4,5,6,7,8,9九個數填入3×3方格中,使每一行,每一列以及兩條對角線上的數字之和都相等.請你將1,2,3,4,5,6,7,8,9填入下表的9個空格中,完成三階幻方.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知點是線段上一點,點在線段上,點在線段上,、兩點分別從、出發(fā)以、的速度沿直線向左運動,運動方向如箭頭所示.
(1)若,當點、運動了,求的值.
(2)若點、運動時,總有,則:____________,并說明理由.
(3)如圖2,若,點是直線上一點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com