【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用元購書若干本, 并按該書定價元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了,他用元所購該書數(shù)量比第一次多本.當按定價元售出本時,出現(xiàn)滯銷,便以定價的折售完剩余的書.
每本書第一次的批發(fā)價是多少錢?
試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?
【答案】(1)每本書第一次的批發(fā)價是元;(2)該老板這兩次售書總體上是賺錢了,賺了元.
【解析】
(1)設(shè)每本書第一次的批發(fā)價是元,先用x的代數(shù)式表示出第一次和第二次的購書數(shù)量,再根據(jù)第二次購書數(shù)量比第一次購書數(shù)量多10本即可列出方程,解方程即得結(jié)果;
(2)先根據(jù)(1)題的結(jié)果求出兩次購書的數(shù)量,再分別計算出兩次購書賺的錢數(shù),然后相加即得答案.
解:(1)設(shè)每本書第一次的批發(fā)價是元,依題意得:,解得.
經(jīng)檢驗,是所列方程的解.
答:每本書第一次的批發(fā)價是元.
(2)第一次購書:1200÷5=240本,則第二次購書250本,
第一次購書賺錢為:240×(7-5)=480元,
第二次購書賺錢為:150×(7-5×1.2)+(250-150)×(7×0.5-5×1.2)=-100元,
所以兩次共賺錢:480-100=380元,
所以該老板這兩次售書總體上是賺錢了,賺了元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,函數(shù)(x<0)的圖象與直線y=x+2交于點A(-3,m).
(1)求k,m的值;
(2)已知點P(a,b)是直線y=x上,位于第三象限的點,過點P作平行于x軸的直線,交直線y=x+2于點M,過點P作平行于y軸的直線,交函數(shù)(x<0)的圖象于點N.
①當a=-1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM結(jié)合函數(shù)的圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式及售價x的取值范圍;
售價(元/臺) | 月銷售量(臺) |
400 | 200 |
250 | |
x |
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為,以線段為邊在第四象限內(nèi)作等邊三角形,點為正半軸上一動點, 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點.
(1)求證:≌;
(2)在點的運動過程中,的度數(shù)是否會變化?如果不變,請求出的度數(shù);如果變化,請說明理由.
(3)當點運動到什么位置時,以為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備購進兩種商品,種商品毎件的進價比種商品每件的進價多20元,用3000元購進種商品和用1800元購進種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.
(1)種商品每件的進價和種商品每件的進價各是多少元?
(2)商店計劃用不超過1560元的資金購進兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進貨方案?
(3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠()元,種商品售價不變,在(2)條件下,請設(shè)計出銷售這40件商品獲得總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E在同一條直線上,連結(jié)BD,BE.以下四個結(jié)論:①BD=CE ;②BD⊥CE ;③∠ACE+∠DBC=45°; ④∠ACE=∠DBC ,其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:以線段l的一個端點為旋轉(zhuǎn)中心,將這條線段順時針旋轉(zhuǎn)α(0°<α≤360°),再沿水平方向向右平移m個單位后得到對應(yīng)線段l′(若m<0,則表示沿水平向左的方向平移|m|個單位),則將線段l到線段l′的變換記為<α,m>.如圖①,將線段AB繞點A順時針旋轉(zhuǎn)30°,再沿水平向右的方向平移3個單位后得到線段A′B′的變換記為<30°,3>.
(1)已知:圖②、圖③均為5×4的正方形網(wǎng)格,在圖②中將線段AB繞點A進行變換<90°,4>,得到對應(yīng)線段A′B′;在圖③中將線段AB繞點A進行變換<270°,﹣3>,得到對應(yīng)線段A′B′,按要求分別畫出變換后的對應(yīng)線段.
(2)如圖④,在平面直角坐標系中,拋物線y=﹣x2+2x與x軸正半軸交于點A,線段OA繞點A進行變換<α,m>后得到對應(yīng)線段的一個端點恰好落在拋物線的頂點處,直接寫出符合題意的<α,m>為________________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com