甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費(fèi),其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時,甲商場收費(fèi)為y1元,乙商場收費(fèi)為y2元.
(1)分別求出y1,y2與x之間的關(guān)系式;
(2)當(dāng)甲、乙兩個商場的收費(fèi)相同時,所買商品為多少件?
(3)當(dāng)所買商品為5件時,應(yīng)選擇哪個商場更優(yōu)惠?請說明理由.

(1);y2=2250x;
(2)甲、乙兩個商場的收費(fèi)相同時,所買商品為6件;
(3)所買商品為5件時,應(yīng)選擇乙商場更優(yōu)惠.

解析試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;
(2)由收費(fèi)相同,列出方程求解即可;
(3)由函數(shù)解析式分別求出x=5時的函數(shù)值,即可得解
試題解析:(1)當(dāng)x=1時,y1=3000;
當(dāng)x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.

y2=3000x(1﹣25%)=2250x,
∴y2=2250x;
(2)當(dāng)甲、乙兩個商場的收費(fèi)相同時,2100x+900=2250x,
解得x=6,
答:甲、乙兩個商場的收費(fèi)相同時,所買商品為6件;
(3)x=5時,y1=2100x+900=2100×5+900=11400,
y2=2250x=2250×5=11250,
∵11400>11250,
∴所買商品為5件時,應(yīng)選擇乙商場更優(yōu)惠.
考點(diǎn):一次函數(shù)的應(yīng)用 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足-(a-4)2≥0,
(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對角線的交點(diǎn)D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動1個單位長度的速度平移,設(shè)平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;
點(diǎn)P為正方形OABC的對角線AC上的動點(diǎn)(端點(diǎn)A、C除外),PM⊥PO,交直線AB于M,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=x+b(b≠0)交坐標(biāo)軸于A、B兩點(diǎn),點(diǎn)D在直線上,D的橫縱坐標(biāo)之積為2,過D作兩坐標(biāo)軸的垂線DC、DE,連接OD.
(1)求證:AD平分∠CDE;
(2)對任意的實(shí)數(shù)b(b≠0),求證:AD•BD為定值;
(3)是否存在直線AB,使得四邊形OBCD為平行四邊形?若存在,求出直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)圖象如圖:
(1)求一次函數(shù)的解析式;
(2)若點(diǎn)P為該一次函數(shù)圖象上一點(diǎn),且點(diǎn)A為該函數(shù)圖象與x軸的交點(diǎn),若SPAO=6,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一次蠟燭燃燒實(shí)驗(yàn)中,蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)之間為一次函數(shù)關(guān)系.根據(jù)圖象提供的信息,解答下列問題:
(1)求出蠟燭燃燒時y與x之間的函數(shù)關(guān)系式;
(2)求蠟燭從點(diǎn)燃到燃盡所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一條筆直的公路旁依次有A、B、C三個村莊,甲、乙兩人同時分別從A、B兩村出發(fā),甲騎摩托車,乙騎電動車沿公路勻速駛向C村,最終到達(dá)C村.設(shè)甲、乙兩人到C村的距離y1,y2(km)與行駛時間x(h)之間的函數(shù)關(guān)系如圖所示,請回答下列問題:
(1)A、C兩村間的距離為    km,a=    
(2)求出圖中點(diǎn)P的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)乙在行駛過程中,何時距甲10km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)的圖象相交于點(diǎn)B,
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系中,一次函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn).
(1)求的值和一次函數(shù)的表達(dá)式;
(2)點(diǎn)B在雙曲線上,且位于直線的下方,若點(diǎn)B的橫、縱坐標(biāo)都是整數(shù),直接寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè),是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達(dá)式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實(shí)數(shù), 的值.

查看答案和解析>>

同步練習(xí)冊答案