【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=x+4經(jīng)過A,C兩點(diǎn),
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對(duì)稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動(dòng)點(diǎn)M在直線y=x+4上,且△ABC與△COM相似,求點(diǎn)M的坐標(biāo).
【答案】(1)(2)P點(diǎn)坐標(biāo)(﹣5,﹣),Q點(diǎn)坐標(biāo)(3,﹣)(3)M點(diǎn)的坐標(biāo)為(﹣,),(﹣3,1)
【解析】
試題(1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得A、C點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行于x軸的直線與拋物線的交點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,可得P、Q關(guān)于直線x=﹣1對(duì)稱,根據(jù)PQ的長(zhǎng),可得P點(diǎn)的橫坐標(biāo),Q點(diǎn)的橫坐標(biāo),根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;
(3)根據(jù)兩組對(duì)邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似,可得CM的長(zhǎng),根據(jù)等腰直角三角形的性質(zhì),可得MH的長(zhǎng),再根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案.
試題解析:(1)當(dāng)x=0時(shí),y=4,即C(0,4),
當(dāng)y=0時(shí),x+4=0,解得x=﹣4,即A(﹣4,0),
將A、C點(diǎn)坐標(biāo)代入函數(shù)解析式,得
,
解得,
拋物線的表達(dá)式為;
(2)PQ=2AO=8,
又PQ∥AO,即P、Q關(guān)于對(duì)稱軸x=﹣1對(duì)稱,
PQ=8,﹣1﹣4=﹣5,
當(dāng)x=﹣5時(shí),y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);
﹣1+4=3,即Q(3,﹣);
P點(diǎn)坐標(biāo)(﹣5,﹣),Q點(diǎn)坐標(biāo)(3,﹣);
(3)∠MCO=∠CAB=45°,
①當(dāng)△MCO∽△CAB時(shí),,即,
CM=.
如圖1,
過M作MH⊥y軸于H,MH=CH=CM=,
當(dāng)x=﹣時(shí),y=﹣+4=,
∴M(﹣,);
當(dāng)△OCM∽△CAB時(shí),,即,解得CM=3,
如圖2,
過M作MH⊥y軸于H,MH=CH=CM=3,
當(dāng)x=﹣3時(shí),y=﹣3+4=1,
∴M(﹣3,1),
綜上所述:M點(diǎn)的坐標(biāo)為(﹣,),(﹣3,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0),(0,3),OD=5,點(diǎn)P在BC(不與點(diǎn)B、C重合)上運(yùn)動(dòng),當(dāng)△OPD為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,.
(1)在所給坐標(biāo)系中作出關(guān)于y軸的對(duì)稱圖形;
(2)分別寫出點(diǎn),,的坐標(biāo);
(3)在軸上是否存在一點(diǎn),使的周長(zhǎng)最小,若存在,在所給坐標(biāo)系中作出點(diǎn)(不寫作法,保留作圖痕跡)并寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一塊長(zhǎng)方體木塊的各棱長(zhǎng)如圖所示,一只蜘蛛在木塊的一個(gè)頂點(diǎn)A處,一只蒼蠅在這個(gè)長(zhǎng)方體上和蜘蛛相對(duì)的頂點(diǎn)B處,蜘蛛急于捉住蒼蠅,沿著長(zhǎng)方體的表面向上爬.
(1)如果D是棱的中點(diǎn),蜘蛛沿“AD→DB”路線爬行,它從A點(diǎn)爬到B點(diǎn)所走的路程為多少?
(2)若蜘蛛還走前面和右面這兩個(gè)面,你認(rèn)為“AD-DB"是最短路線嗎?如果不是,請(qǐng)求出最短路程,如果是,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l與坐標(biāo)軸相交于點(diǎn)M(3,0),N(0,﹣4),反比例函數(shù)y=(x>0)的圖象經(jīng)過Rt△MON的外心A.
(1)求直線l的解析式;
(2)直接寫出點(diǎn)A坐標(biāo)及k值;
(3)在函數(shù)y=(x>0)的圖象上取異于點(diǎn)A的一點(diǎn)B,作BC⊥x軸于點(diǎn)C,連接OB交直線l于點(diǎn)P,若△OMP的面積與△OBC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A,B,且OA,OB的長(zhǎng)(OA>OB)是方程x2-10x+24=0的兩個(gè)根,P(m,n)是第一象限內(nèi)直線y=kx+b上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合).
(1)求直線AB的解析式.
(2)C是x軸上一點(diǎn),且OC=2,求△ACP的面積S與m之間的函數(shù)關(guān)系式;
(3)在x軸上是否有在點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB與x軸交于點(diǎn)A(4,0)、與y軸交于點(diǎn)B(0,3),直線 BD與x軸交于點(diǎn)D,將直線AB沿直線BD翻折,點(diǎn)A恰好落在y軸上的C點(diǎn),則直線BD對(duì)應(yīng)的函數(shù)關(guān)系式為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請(qǐng)按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫出對(duì)稱中心M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一種動(dòng)畫程序,在平面直角坐標(biāo)系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A(1,1),B(2,1),C(1,3),用信號(hào)槍沿直線y=3x+b發(fā)射信號(hào),當(dāng)信號(hào)遇到黑色區(qū)域時(shí),區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( 。
A.﹣5≤b≤0B.﹣5<b≤﹣3C.﹣5≤b≤3D.﹣5≤b≤5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com