【題目】如圖,已知△ABC 中,∠ABC=45°,F 是高 AD 和 BE 的交點,∠CAD=30°,CD=4,則線段 BF 的長度為( )
A. 6 B. 7 C. 8 D. 9
科目:初中數學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數據:tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度數.
(2)求教學樓的高BD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把長方形紙片OABC放入平面直角坐標系中,使OC、OA分別與x軸,y軸重合,連接OB,將長方形紙片OABC沿OB折疊,使點A落在點A,的位置,A,B與x軸交于D,若點B的坐標為(4,2),則點A,的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC于點B,DC⊥BC于點C,DE平分∠ADC交BC于點E,點F為線段CD延長線上一點,∠BAF=∠EDF.
(1)求證:∠DAF=∠F;
(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數.
請完善解答過程,并在括號內填寫相應的理論依據.
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0),C(﹣1,0).
(1)將△ABC向右平移5個單位,再向下平移4個單位得△A1B1C1,圖中畫出△A1B1C1,平移后點A的對應點A1的坐標是______.
(2)將△ABC沿x軸翻折△A2BC,圖中畫出△A2BC,翻折后點A對應點A2坐標是______.
(3)將△ABC向左平移2個單位,則△ABC掃過的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數.
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成填空.
你能比較 和 的大小嗎?
為了解決這個問題,先把問題一般化,比較 和 ( ,且 為整數)的大。缓髲姆治 ,, 的簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經過歸納、猜想得出結論.
(1)通過計算(可用計算器)比較下列(1)-(7)組兩數的大。海ㄔ跈M線上填上 " "" “或” ")
(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;
(2)歸納第(1)問的結果,可以猜想出 和 的大小關系;
(3)根據以上結論,可以得出 和 的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖用點A(3,1)表示放置3個胡蘿卜、1棵青菜,點B(2,3)表示放置2個胡蘿卜、3棵青菜.
(1)請你寫出其他各點C,D,E,F(xiàn)所表示的意義;
(2)若一只兔子從A到達B(順著方格線走),有以下幾條路可以選擇:①A→C→D→B;②A→F→D→B;③A→F→E→B,幫可愛的小白兔選一條路,使它吃到的食物最多.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com