【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O分別交AB、BC于點M、N,直線CP是⊙O的切線,且點PAB的延長線上

1若∠P=40°,求∠BCP的度數(shù);

2)若BC=2,sinBCP=,求點BAC的距離.

【答案】125°;24

【解析】試題分析:(1)根據(jù)CP是⊙O的切線,AC為直徑,可得∠ACP=90°,再由∠P=40°從而可得∠BAC=50°,再根據(jù)AB=AC求得∠ABC的度數(shù)即可得;

2)作BFACF,由題意可得∠ANC=90°,再根據(jù)等腰三角形的性質(zhì)求得CN長,再根據(jù)直角三角形兩銳角互余推得∠BCP=CAN,由已知即可得sinCAN=從而可得.

試題解析:1)∵CP是⊙O的切線,AC為直徑,

∴∠ACP=90°,

又∵∠P=40°,

∴∠BAC=50°,

AB=AC

∴∠ABC=ACB=65°,

∴∠BCP =ABC-P=65°-40°=25°;

2)如圖,作BFACF,

AC為直徑,

∴∠ANC=90°

AB=AC,

CN=CB=,

∵∠BCP+ACN =CAN+ACN

∴∠BCP=CAN,

sinBCP=,

sinCAN=

,

AC=5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax+2+ka0),點A(﹣4,y1)、B(﹣2,y2)、C2y3)是圖象上的三個點,則y1、y2y3的大小關(guān)系是_____(用“<”連接).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中的兩個多邊形ABCDEFA1B1C1D1E1F1相似(各字母已按對應(yīng)關(guān)系排列),AD1135°,BE1120°,C195°.

(1)求∠F的度數(shù);

(2)如果多邊形ABCDEFA1B1C1D1E1F1的相似比是11.5,且CD15cm,求C1D1的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCABC=90°,,AB=4 cm BC=3cm,動點P3cm/s的速度由AC運動,動點Q同時以1cm/s的速度由BCB的延長線方向運動,連PQABD,則當運動時間為____s時,ADP是以AP為腰的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在第1中,;在邊上任取一點,延長,使,得到第2;在邊上任取一點,延長,使,得到第3按此做法繼續(xù)下去,則第個三角形中以為頂點的底角度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩點的坐標分別為(0,4),(0,2),點Px軸正半軸上一動點,過點AAP的垂線,過點BBP的垂線,兩垂線交于點Q,連接PQ,M為線段PQ的中點

1)求證:A、BP、Q四點在以M為圓心的同一個圓上;

2)當⊙Mx軸相切時,求點Q的坐標;

3)當點P從點(1,0)運動到點(20)時,請直接寫出線段QM掃過圖形的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.

(1)反比例函數(shù)的表達式 ;一次函數(shù)的表達式 .

(2)若在軸上有一點,其橫坐標是1,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AC是菱形ABCD的對角線,∠BAC=60°,點E是直線BC上的一個動點,連接AE,以AE為邊作菱形AEFG,并且使∠EAG=60°,連接CG,當點E在線段BC上時,如圖1,易證:AB=CG+CE.

(1)當點E在線段BC的延長線上時(如圖2),猜想AB,CG,CE之間的關(guān)系并證明;

(2)當點E在線段CB的延長線上時(如圖3),直接寫出AB,CG,CE之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖ΔABC中,ABACD點在BC上,且BDAD,DCAC.并求∠B的度數(shù).

查看答案和解析>>

同步練習冊答案