初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一,為此對(duì)某市部分學(xué)校的七年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了
 
名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù)
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)某市近12000名七年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
考點(diǎn):條形統(tǒng)計(jì)圖,用樣本估計(jì)總體,扇形統(tǒng)計(jì)圖
專題:
分析:(1)根據(jù)A等級(jí)的人數(shù)是50,占25%即可求得總?cè)藬?shù);
(2)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解;
(3)利用360°乘以對(duì)應(yīng)的百分比即可求解;
(4)利用總?cè)藬?shù)12000乘以對(duì)應(yīng)的百分比即可求解.
解答:解:(1)調(diào)查的總?cè)藬?shù)是:50÷25%=200(人);
(2)C等級(jí)的人數(shù)是:200×(1-25%-60%)=30(人),
;
(3)C級(jí)所占的圓心角的度數(shù)是:360°×(1-25%-60%)=54°;
(4)12000×(25%+60%)=10200(人).
答:七年級(jí)學(xué)生中大約有10200名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo).
點(diǎn)評(píng):本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)|
3
2
-
2
|+
1
2
(-2)2
+
2
÷
1
2
;
(2)(-3)2-
5
-
5
-
3-8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形網(wǎng)格中的△ABC,若小方格邊長(zhǎng)為1.
(1)求△ABC的周長(zhǎng);
(2)△ABC是直角三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,BD平分∠ABC,且∠ADE=∠C.
求證:∠AED=2∠EDB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知c<0,拋物線y=x2+bx+c與x軸交于A(x1,0),B(x2,0)兩點(diǎn)(x2>x1),與y軸交于點(diǎn)C.
(1)若x2=1,BC=
5
,求函數(shù)y=x2+bx+c的最小值;
(2)過(guò)點(diǎn)A作AP⊥BC,垂足為P(點(diǎn)P在線段BC上),AP交y軸于點(diǎn)M.若
OA
OM
=2,求拋物線y=x2+bx+c頂點(diǎn)的縱坐標(biāo)隨橫坐標(biāo)變化的函數(shù)解析式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線交邊BC于N.
(1)圖中是否存在與△ODM相似的三角形?若存在,請(qǐng)找出并給于證明.
(2)設(shè)DM=x,OA=R,求R關(guān)于x 的函數(shù)關(guān)系式;是否存在整數(shù)R,使得利用正方形ABCD內(nèi)部的扇形OAM圍成的圓錐地面周長(zhǎng)可以為4π?若存在請(qǐng)求出此時(shí)DM的長(zhǎng);不存在,請(qǐng)說(shuō)明理由.
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過(guò)程中,△CMN的周長(zhǎng)如何變化?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).

(1)求該拋物線的解析式及頂點(diǎn)M坐標(biāo);
(2)求△BCM面積與△ABC面積的比;
(3)若P是x軸上一個(gè)動(dòng)點(diǎn),過(guò)P作射線PQ∥AC交拋物線于點(diǎn)Q,隨著P點(diǎn)的運(yùn)動(dòng),在拋物線上是否存在這樣的點(diǎn)Q,使以A,P,Q,C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠BAC與∠GCA互補(bǔ),∠1=∠2,若∠E=46°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,規(guī)定每戶每月用水不超過(guò)6立方米時(shí),按其本價(jià)格收費(fèi),超過(guò)6立方米時(shí),超過(guò)的部分要加價(jià)收費(fèi),該市某戶居民今年4、5月份的用水量和水費(fèi)如下表所示,則用水收費(fèi)的兩種價(jià)格為不超過(guò)6立方米時(shí)每m3
 
元,超過(guò)6立方米時(shí),超過(guò)的部分每m3
 
元.
表格如下:
月份 用水量/m3 水費(fèi)/元
4 8 20
5 9 24

查看答案和解析>>

同步練習(xí)冊(cè)答案