【題目】如圖,正方形中,是上的一點,連接,過點作,垂足為點,延長交于點,連接.
(1)求證:.
(2)若正方形邊長是5,,求的長.
【答案】(1)證明見解析;(2).
【解析】分析: (1)根據ASA證明△ABE≌△BCF,可得結論;
(2)根據(1)得:△ABE≌△BCF,則CF=BE=2,最后利用勾股定理可得AF的長.
詳解:
(1)證明:∵四邊形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∴∠BAE+∠AEB=90°,
∵BH⊥AE,
∴∠BHE=90°,
∴∠AEB+∠EBH=90°,
∴∠BAE=∠EBH,
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:∵AB=BC=5,
由(1)得:△ABE≌△BCF,
∴CF=BE=2,
∴DF=5-2=3,
∵四邊形ABCD是正方形,
∴AB=AD=5,∠ADF=90°,
由勾股定理得:AF=.
科目:初中數(shù)學 來源: 題型:
【題目】某市民廣場地面鋪設地磚,決定采用黑白2種地磚,按如下方案鋪設,首先在廣場中央鋪2塊黑色磚(如圖①),然后在黑色磚的四周鋪上白色磚(如圖②),再在白色磚的四周鋪上黑色磚(如圖③),再在黑色磚的四周鋪上白色磚(如圖④),這樣反復更換地磚的顏色,按照這種規(guī)律,直至鋪滿整個廣場,觀察下圖,解決下列問題.
(1)填表
圖形序號數(shù) | ① | ② | ③ | ④ | … |
地磚總數(shù)(包括黑白地磚) | 2 |
(2)按照這種規(guī)律第6個圖形一共用去地磚多少塊?
(3)按照這種規(guī)律第個圖形一共用去地磚多少塊?(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是( )
A. 經過集中噴灑藥物,室內空氣中的含藥量最高達到
B. 室內空氣中的含藥量不低于的持續(xù)時間達到了
C. 當室內空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效
D. 當室內空氣中的含藥量低于時,對人體才是安全的,所以從室內空氣中的含藥量達到開始,需經過后,學生才能進入室內
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市在“元旦”期間對顧客實行優(yōu)惠,規(guī)定一次性購物優(yōu)惠辦法:
少于200元,不予優(yōu)惠;高于200元但低于500元時,九折優(yōu)惠;消費500元或超過500元時,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折優(yōu)惠.根據優(yōu)惠條件完成下列任務:
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該超市一次性購物x元,當x小于500但不小于200時,他實際付款0.9x,當x大于或等于500元時,他實際付款多少元?(用含x的代數(shù)式表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a的式子表示王老師兩次購物實際付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是邊BM,CM的中點,當AB與AD滿足什么條件時,四邊形MENF是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級甲、乙兩班分別選5名同學參加“學雷鋒見行動”演講比賽,其預賽成績如圖:
(1)根據上圖求出下表中的a,b,c的值(單位:分);
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | a | 8.5 | 0.7 |
乙班 | b | 8 | c | 1.6 |
(2)學校決定在甲、乙兩班中選取預賽成績較好的5人參加該活動的縣級演講比賽,求這5人預賽成績的平均分數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com