【題目】如圖,在正方形ABCD中,AB=8,ACBD交于點(diǎn)O,NAO的中點(diǎn),點(diǎn)MBC邊上,且BM=6. P為對(duì)角線BD上一點(diǎn),則PM—PN的最大值為___.

【答案】2.

【解析】

如圖所示,以BD為對(duì)稱軸作N的對(duì)稱點(diǎn),連接,根據(jù)對(duì)稱性質(zhì)可知,,由此可得,當(dāng)三點(diǎn)共線時(shí),取“=”,此時(shí)即PM—PN的值最大,由正方形的性質(zhì)求出AC的長(zhǎng),繼而可得,,再證明,可得PM∥AB∥CD,90°,判斷出為等腰直角三角形,求得長(zhǎng)即可得答案.

如圖所示,以BD為對(duì)稱軸作N的對(duì)稱點(diǎn),連接,根據(jù)對(duì)稱性質(zhì)可知,,當(dāng)三點(diǎn)共線時(shí),取“=”,

正方形邊長(zhǎng)為8,

∴AC=AB=,

∵OAC中點(diǎn),

∴AO=OC=,

∵NOA中點(diǎn),

∴ON=

,

∵BM=6,

∴CM=AB-BM=8-6=2

,

∴PM∥AB∥CD90°,

∵∠=45°,

∴△為等腰直角三角形,

∴CM==2,

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“春種一粒粟,秋收萬顆子”,唐代詩(shī)人李紳這句詩(shī)中的“粟”即谷子(去皮后則稱為“小米”),被譽(yù)為中華民族的哺育作物.某商場(chǎng)銷售一種品牌的小米,進(jìn)價(jià)是40元/袋.市場(chǎng)調(diào)查后發(fā)現(xiàn),售價(jià)是60元/袋時(shí),平均每星期的銷售量是300袋,而銷售單價(jià)每降低1元,平均每星期就可多售出30袋.

(1)若每袋小米降價(jià)x元,寫出該商場(chǎng)銷售該品牌小米每星期獲得的利潤(rùn)w(元)與x(元)之間的函數(shù)關(guān)系式.

(2)在(1)的條件下,每袋小米的銷售單價(jià)是多少元時(shí),該商場(chǎng)每星期銷售這種品牌小米獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(diǎn),與軸相交于點(diǎn),點(diǎn)在拋物線上,且軸相交于點(diǎn),過點(diǎn)的直線平行于軸,與拋物線相交于兩點(diǎn),則線段的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條公路旁依次有三個(gè)村莊,甲乙兩人騎自行車分別從村、村同時(shí)出發(fā)前往村,甲乙之間的距離與騎行時(shí)間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:①兩村相距10;②出發(fā)1.25后兩人相遇;③甲每小時(shí)比乙多騎行8;④相遇后,乙又騎行了1565時(shí)兩人相距2.其中正確的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的邊軸上,,以為頂點(diǎn)的拋物線經(jīng)過點(diǎn),交y軸于點(diǎn),動(dòng)點(diǎn)在對(duì)稱軸上.

1)求拋物線解析式;

2)若點(diǎn)點(diǎn)出發(fā),沿方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng)到點(diǎn)停止,設(shè)運(yùn)動(dòng)時(shí)間為秒,過點(diǎn)于點(diǎn),過點(diǎn)平行于軸的直線交拋物線于點(diǎn),連接,當(dāng)為何值時(shí),的面積最大?最大值是多少?

3)若點(diǎn)是平面內(nèi)的任意一點(diǎn),在軸上方是否存在點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫出符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線L經(jīng)過點(diǎn)A-3,0)和點(diǎn)B0,-6),L關(guān)于原點(diǎn)O對(duì)稱的拋物線為.

1)求拋物線L的表達(dá)式;

2)點(diǎn)P在拋物線上,且位于第一象限,過點(diǎn)PPD⊥y軸,垂足為D.若△POD△AOB相似,求符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售部有營(yíng)業(yè)員15人,該公司為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營(yíng)業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì),為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),公司有關(guān)部門統(tǒng)計(jì)了這15人某月的銷售量,如下表所示:

月銷售量/件數(shù)

1770

480

220

180

120

90

人數(shù)

1

1

3

3

3

4

(1)直接寫出這15名營(yíng)業(yè)員該月銷售量數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);

(2)如果想讓一半左右的營(yíng)業(yè)員都能達(dá)到月銷售目標(biāo),你認(rèn)為(1)中的平均數(shù)、中位數(shù)、眾數(shù)中,哪個(gè)最適合作為月銷售目標(biāo)?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的拋物線是二次函數(shù)y=ax2+bx+ca0)的圖象,則下列結(jié)論:①abc0;②2a+b=0;③拋物線與x軸的另一個(gè)交點(diǎn)為(40);④c+a>b;⑤3a+c0.其中正確的結(jié)論有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠A=30°,BC=1,以邊AC上一點(diǎn)O為圓心,OA為半徑的⊙O經(jīng)過點(diǎn)B

(1)⊙O的半徑;

(2)點(diǎn)P中點(diǎn),作PQ⊥AC,垂足為Q,求OQ的長(zhǎng);

(3)(2)的條件下,連接PC,求tan∠PCA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案