分析 (1)過點O作OF⊥DE,垂足為點F,在Rt△ADE中利用勾股定理計算出DE=2.5,再利用面積法求出OF=1,然后根據(jù)切線的判定方法可判斷DE與半圓O相切;
(2)利用陰影部分的面積=梯形BECD的面積-半圓的面積求解.
解答 解:(1)DE與半圓O相切.理由如下:
過點O作OF⊥DE,垂足為點F,
在Rt△ADE中,∵AD=2,AE=1.5,
∴DE=$\sqrt{{2}^{2}+1.{5}^{2}}$=2.5,
∵S四邊形BCDE=S△DOE+S△BOE+S△CDO,
∴$\frac{1}{2}$(0.5+2)×2=$\frac{1}{2}$×2.5•OF+$\frac{1}{2}$×1×0.5+$\frac{1}{2}$×1×2,
∴OF=1,
∵OF的長等于圓O的半徑,OF⊥DE,
∴DE與半圓O相切;
(2)陰影部分的面積=梯形BECD的面積-半圓的面積
=$\frac{1}{2}$×(0.5+2)×2-$\frac{1}{2}$•π•12
=$\frac{5-π}{2}$(cm2).
點評 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.在判定一條直線為圓的切線時,當(dāng)已知條件中未明確指出直線和圓是否有公共點時,常過圓心作該直線的垂線段,證明該線段的長等于半徑;當(dāng)已知條件中明確指出直線與圓有公共點時,常連接過該公共點的半徑,證明該半徑垂直于這條直線.注意把不規(guī)律圖形的面積的計算問題化為規(guī)則圖形面積的和差的計算問題.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行四邊形 | B. | 矩形 | C. | 菱形 | D. | 正方形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com